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Abstract—The rapid rise in spatial data volumes from diverse
sources necessitate efficient spatial data processing capability.
Although most relational databases support spatial extensions of
SQL query features, they offer limited scalability. Traditional
relational database query processing follows a pull-based (or
tuple-at-a-time) model of query processing. This is not efficient
for processing large volumes of data. A number of specialized spa-
tial data processing systems were developed that extend cluster
computing frameworks, such as Spark and Hadoop. However,
these systems are characterized by limited or no support for
spatial SQL query execution. The few systems that support SQL
querying, suffer from the overheads of the pull-based model.

We present a compilation-based distributed SQL query pro-
cessing system. It follows a data-centric query compilation
approach that takes a SQL query and generates distributed
C++ (UPC++) based physical query plans. The generated code is
compiled and executed on a distributed in-memory high perfor-
mance framework based on the Partitioned Global Address Space
(PGAS) paradigm. We also introduce morsel-driven parallelism
for scalable spatial query execution in a distributed runtime.
We conduct experimental evaluation of our system with two
real-world datasets on a number of spatial query workloads.
Experimental results demonstrate that our system performs
significantly better than a leading spatial big data system Apache
Sedona and distributed parallel relational database Citus.

I. INTRODUCTION

The volume of spatial data is rising due to many factors, in-
cluding the spread of GPS-enabled mobile devices and sensors,
geo-social media, advances in remote sensing and satellite
imaging, and improving storage capacity. In response to the
challenges of spatial big data several specialized systems were
proposed that extended cluster computing frameworks Hadoop
and Spark. They include Apache Sedona [1] (previously,
GeoSpark), SpatialSpark [2], Simba [3], LocationSpark [4],
Hadoop-GIS [5] and SpatialHadoop [6]. These systems en-
abled practitioners to process spatial data by leveraging a
cluster of machines. However, they are still in early stages of
development and hence they have several limitations. Accord-
ing to Yu et al. [7], some of these systems support only point
objects or MBR-based spatial query processing. Moreover,
most of them either do not support spatial SQL or offer limited
support for SQL that does not conform to ANSI-standard SQL
standards [8].

In contrast, SQL is the lingua franca for relational database
management systems (RDBMS) and most commercial and
open-source relational databases offer spatial functionalities.

Increasingly, SQL is becoming a top language for data
analysis [9]. While RDBMS are widely used for enterprise
data management, partly due to the popularity of SQL, they
suffer from performance bottlenecks due to their focus on
minimizing disk. RDBMS engines follow an iterator-based
“tuple-at-a-time” model, which is also known as the Volcano
model [10] or pull-based model. This is inherently inefficient
in terms of performance due to processing each tuple by
making repeated calls to the next() function call for each
relational operator in the query plan from an input tuple
stream. Driven by advances in computer architecture, modern
machines are equipped with large main memory and several
processing cores. Since larger amounts of data can fit in the
main memory than was previously possible, optimizing code
for memory usage and adopting CPU-efficient techniques have
become more important. Therefore, in recent years, query
compilation or push-based execution model has attracted con-
siderable attention from the research community [11] Query
compilation is different from traditional interpretation-based
query processing, as it allows for the generation of query-
specific and data-centric code.

Although query compilation can offer significant perfor-
mance benefits, re-architecting an SQL query engine to in-
corporate data-centric compilation is challenging because of
the associated complexity. Consequently, existing RDBMSs
have either not adopted it at all, or they support a very limited
form of query compilation. For example, currently PostgreSQL
supports just-in-time (JIT) query compilation for tuple materi-
alization and expression evaluation only. This requires building
PostgreSQL from source with the flag --with-llvm or
building it with OMR JitBuilder support [12]. Adapting query
compilation techniques for spatial workloads entails additional
complexities. To our knowledge, only one previous research
made an endeavour [13], where they identify why existing
query compilation techniques are not quite effective for spatial
queries. They propose a generative query compilation ap-
proach, LB2-Spatial, which transpiles a spatial SQL query into
a source program (in Scala or C) and it then gets compiled into
native code and executed. To our understanding, LB2-Spatial
focuses on MBR-based spatial query execution (essentially, the
Filter step of the 2 step Filter-Refinement process). Moreover,
LB2-Spatial is based on a single node. Such an approach is not
scalable, particularly, in view of rapidly growing data volume.
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Besides a lack of support for SQL for spatial data, another
issue with many of the big spatial systems is that they do not
handle processing skew dynamically. Spatial data is charac-
terized by both (i) data skew, caused by uneven distributions
of tuples, and (ii) processing skew, caused by variation in
computation time in the Refinement step due to the difference
in object sizes and complexity. Existing approaches support
spatial partitioning that can handle data skew, but they do not
handle processing skew very well. LocationSpark introduced
a scheduler to deal with spatial query skew resulted by high
popularity of certain data partitions. However, LocationSpark
does not handle processing skew, and it does not support SQL.
Apache Sedona supports standard spatial SQL, but it also does
not handle processing skew.

In this paper, we present a scalable relational data system
that supports execution of standard spatial SQL over a cluster
of machines. Our system, CasaDB [14], performs compilation
of SQL queries following a data-centric approach. It takes
a SQL query as input and generates UPC++ code (a high
performance computing or HPC extension of C++) following a
distributed HPC programming model called Partitioned Global
Address Space (PGAS) [15]. The UPC++ code is compiled
into native code and executed on a PGAS runtime distributed
over a number of machines. To support parallel query process-
ing while addressing processing skew, our system introduces
a distributed morsel-driven parallel query scheduler. It is
inspired by the morsel-driven parallelism [16], which is based
on the idea of scheduling small fragments of input data, called
morsels, to worker thread. The worker thread processes a
morsel over an entire operator pipeline until the next pipeline
breaker in a compiled query plan.

For regular non-spatial data, each morsel contains the same
number of tuples. However, the original morsel-driven par-
allelism approach [16] will not work for spatial data. For a
spatial workload, each morsel should correspond to a spatial
partition or tile. Moreover, the morsel-driven approach needs
to be adapted to handle spatial data processing skew. There-
fore, we propose two approaches for morsel-driven parallel
spatial data processing: Monolithic Tile-based Morsel-driven
Parallelism (MTMP) and Granular Tile-based Morsel-driven
Parallelism (GTMP). In both of these approaches, each spatial
tile is treated as a morsel, but in the GTMP we introduce
granularity at a sub-morsel level that are called granules. The
original morsel-driven parallelism was introduced for a single
node multicore machine and for regular (non-spatial) work-
load. To our knowledge, our system is the first to incorporate
distributed spatial query compilation and distributed morsel-
driven spatial query execution. As a result, our approach
can handle processing skew by dynamically handling spatial
partitions over a cluster on machines.

We have conducted a thorough experimental evaluation
with two different real-world spatial datasets: TIGER [17]
California and OpenStreetMap [18] (OSM). On a workload in-
volving several spatial joins. According to prior research [19],
GeoSpark (i.e. Apache Sedona) showed the best performance
among 5 Spark based spatial data systems. Hence, in our

experimental evaluation, we compare CasaDB (spatial) with
Apache Sedona. Our results demonstrate that on spatial query
workloads CasaDB performs 10x to 151x better than Sedona.
We have also conducted an experimental evaluation of CasaDB
against a modern distributed parallel relational database Ci-
tus [20]. Here also CasaDB performs 2x better than Citus.

The main contributions of this paper are as follows:
• We propose an SQL query compilation based scalable

spatial data processing system, which can generate code
for single node or a distributed runtime based on PGAS
paradigm.

• We introduce two algorithms for morsel-driven parallel
processing of spatial queries: MTMP and GTMP.

• We present a few features to improve parallel spatial
query performance, including global and local indexing.

• We present extensive experimental results involving two
real-world datasets against Apache Sedona and Citus.

The remainder of this paper is organized as follows. In
Section II we provide a background. We describe our system
approach in Section III and the query processing algorithms
in Section IV. Then we outline the experimental evaluation
of our system in Section V. The related work is discussed in
Section VI. Finally, we conclude the paper in Section VII.

II. BACKGROUND

In this section we provide some background information
on query compilation and distributed query processing using
partitioned global address space (PGAS).

A. Query Compilation

Many of the database engines were developed when I/O
was dominating the overall processing time and the mem-
ory was low. They typically use the tuple-at-a-time/Volcano
model [10], which is not efficient in the context of modern
machines with large main memory. The key concept behind
query compilation is to process the data in a tight loop and
perform operator fusion. In this way, the code and data reside
in the CPU cache, therefore, producing better performance.
Instead of iterating over every operator in the QEP tree for
each tuple, the query compilation technique generates high-
level/low-level code. Neumann et al. [11] showed how operator
fusion can improve performance significantly by combining
multiple operators in a tight loop until there is a pipeline
breaker, such as join. In this work, we choose this approach
of query compilation for spatial data. In addition, we generate
code that can be executed in distributed environments.

B. Partitioned Global Address Space and UPC++

Although a number of specialized data systems have been
proposed, which are based on Hadoop and Spark, these sys-
tems suffer from the overhead of the underlying frameworks.
In this work, we have aimed to leverage high-performance
computing (HPC) framework to support distributed parallel
execution of SQL queries. Specifically, we utilize UPC++,
which is a PGAS programming framework designed for HPC
that augments C++ with distributed runtime capabilities.
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Partitioned global address space (PGAS) [15] is a parallel

programming model for developing high-performance applica-
tions on computer clusters. It provides a global address space
partitioned among the cluster nodes. PGAS programs are based
on a single program, multiple data (SPMD) model running on
a cluster. At run time, a PGAS program consists of multiple
processes executing the same code on different nodes. Each
process has a rank, which is the identifier of the node it runs
on. The processes can access a global address space partitioned
into local address spaces for each process. Local addresses can
be accessed directly. Remote addresses belonging to different
processes are accessed using API calls, also known as remote
procedure calls (RPC). Figure 1 illustrates the memory orga-
nization of a PGAS system. PGAS contains two segments, a
shared segment where the data is shared globally and a private
segment where the data is private to each thread. The array A[]
is a shared distributed data structure. Each process can access
it. GASNet [21], a PGAS network protocol, provides both
synchronous and asynchronous versions of reads and writes.

UPC++ [22], [23] is a C++ library that supports the Parti-
tioned Global Address Space (PGAS) programming model.
UPC++ is designed for writing efficient, scalable parallel
programs on distributed-memory parallel computers.

III. OUR APPROACH

The high-level architecture of our system, CasaDB, is shown
in Figure 2. The query compilation engine of CasaDB consists
of several modules: Data partitioning module, Data assignment
module, Query plan generator, Code generation module and
machine code generation module. The Data partitioning mod-
ule is responsible for partitioning the data files using QuadTree
partitioning algorithm, which divides the spatial domain of the
dataset into four quadrants recursively. This can deal with data
skew more efficiently as compared to uniform grid partitioning
scheme. Once the data is partitioned, it is the responsibility of
Data assignment module to assign data partitions to the nodes
in the cluster. It makes sure that nodes read only the data they
will be processing. The Query plan generator module takes in
SQL query and it leverages Apache Calcite [24] to generate
optimized physical query plan. The physical query plan in
then ingested by Code generation module, which generates
query-specific, data-centric C++/UPC++ code. This module
follows the push-based model [25] to generate high-level code
and ensures that the tuples stay in the CPU registers until
a pipeline breaker is reached. This pipeline breaker is the

boundary until which a tuple can move through the operators
without materialization. This way of code generation helps
the data to be near the L1 cache, therefore exploiting the
CPU registers and getting the best performance from the
processing units. Finally, the Machine code generator module
produces optimized machine code, which is then sent to all
of the nodes in the cluster. Each of these nodes support an
independent Spatial Morsel-driven Parallelism Module. This
module supports morsel-driven parallelism in each of the
nodes, which helps them to efficiently process each pipeline
independently. Finally, the generated UPC++ is compiled into
native code, which runs on the PGAS runtime, to produce the
query output.

A. Code Generation

We use the compilation based technique [11] to generate
the C++ / UPC++ code for an input SQL query. The main
idea behind this technique is that, during query processing the
tuples should remain in the registers as long as possible, and
they should only be spilled to memory when needed (e.g. at
a pipeline breaker). An important concept in the push-based
data-centric model is the pushing of data towards operators,
instead of pulling tuple at a time from the data stream as
in the Volcano model. The push-based model introduces two
separate functions, produce() and consume(), to generate the
code, as shown in Fig. 3. It is data-centric and keeps the tuples
in the CPU registers as long as possible, and only materializes
the tuples at pipeline breakers. It pushes the data towards the
operators which results in much better code and data locality.
On the other hand, the Volcano model [10], uses the next() to
get the next tuple and it keeps iterating on the tuple stream and
processing them one by one, this introduces a lot of function
calls and materialization points, which make it inefficient. One
thing to note about the compilation based technique is that the
produce() and consume() function calls on the operators are
not present in the final generated C++/UPC++ code, instead
we use these functions to generate parts of the final generated
code. A physical query plan generated by CasaDB for a
Spatial Join query is shown in Figure 4(b). CasaDB has a
set of physical operators and they all correspond to Relational
Algebra (RA) operators. Each of the these physical operators
have produce() and consume() defined on them. Hence, calling
produce() on any of these operators will call produce() on
its child and so on, and calling consume() will emit the
operator specific code. The CTableScan operator emits code
related to reading tuples from a table, whereas CIndexScan is
responsible for emitting code related to index scan. The oper-
ator CSpatialJoin emits code that performs the actual spatial
join operation and spatial predicate evaluation. The operator
CApply performs the projection operation and emits the code
related to that. Finally, the CStore operator is responsible for
materializing the results and it emits code related to that. All of
these operators have their pre-defined C++/UPC++ templates,
which are used to generate data-centric code. As can be seen
in Figure 4(b), the root of the tree CStore calls produce() on its
child CApply, and the CApply calls produce() on its child, and
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this continues until we reach the leaf node. When CTableScan
determines that it has no child to call produce on, it will
call consume() on its parent with the emitted code, which is
highlighted in the Figure 4. Then the parent of CTableScan
will call consume() on its parent, and it will continue until
we reach the root node. There is a CompilerState object in
the Code generation module that knows where to place the
emitted block of code in the final generated code.

B. Data Partitioning
In a typical relational distributed query execution system,

regular (non-spatial) data is statically partitioned using Range
or Hash partitioning so that each node in the cluster gets equal
size of relevant data. Spatial joins use the spatial boundary of
spatial partitions or tiles to perform computation. So, such type
of partitioning scheme will not work with spatial data. We also
need to efficiently deal with the tuple distribution skew, which
is caused by the variation in the number of tuples in each
partition, and also need to deal with processing skew, which
is due to the complexity and difference in the size of spatial
objects. We use a spatial declustering scheme that tries to
create balanced spatial partitions and to deal with the inherent
skew in spatial data. This is based on a recursive partitioning
of the spatial domain, resembling QuadTree partitioning. In
each round of the algorithm, our declustering approach finds
the tile with the most number of objects and partitions it into
four equal size quadrants. This process continues until the total
number of tiles generated so far is below a maximum thresh-
old. This threshold can be configured to generate partitions
with 512, 1024, 2048 and 4096 (or another number of) tiles.
We evaluate the performance with each of these configurations
in Section V. This partitioning of data is handled by the data
partitioning module mentioned above.

C. Tile Assignment
After partitioning the data, we need to make sure that we

only read data that is required by the node. We achieve this
by range-partitioning the number of tiles and then assigning
a range of tiles to each of the nodes. This ensure that each
node only deals with the tiles it is assigned. This assignment
is handled by the Data assignment module mentioned above.
Each node is assigned less than or equal to nt tiles. nt is
defined as:

nt <=

⌈
number of tiles

number of nodes

⌉
(1)

This tile distributions plays a major role in the final Join
operation in the Spatial Morsel-driven parallelism module, as
we only need to look at the corresponding tiles to which a
tuple from probe table belongs too while looking at indexed
tuple. This essentially reduces our search space by a margin.

D. Index Organization

Indexing can speedup the Join operation. In the Filter phase
of the Join operations, a spatial index can filter out a significant
number of tuples. Since the Refinement step dominates the
entire Join operation so, we need to effectively filter out
as many tuples as possible before we get to actual spatial
predicate evaluation. Ideally, we build an index on the smaller
table and then use the same index on all of the nodes, but
in our system index creation is decided very carefully and
it depends on the type of Join operation being performed.
Spatial Joins can be classified into a few categories. Queries
that find object pairs satisfying some spatial predicates, such
as ST_CONTAINS are called Spatial Join Query. A query
that finds object pairs satisfying a particular distance unit is
called Distance Join Query, ST_DISTANCE predicate is a
good example of this. A query that finds object pairs that
are within a particular range (e.g. a circular region with
a given radius) of each other is called Range Join query,
and ST_DIWITHIN can be used for this. The kNN Join
Query finds the top-k nearest object pairs that satisfy a spatial
predicate. For SpatialJoinQuery, CasaDB (spatial) could use
the tile-based approach to perform the join, where in the Filter
step objects belonging to the same tile are processed together,
and it can also use tile-wise index for filtering. In case of
Distance Join Query, using index is not useful, because we
need to calculate the distance between each object pair, and
then check if they satisfy the mentioned distance unit or not.
For RangeJoinQuery, using tile-wise index may also not be
helpful, because we could be checking whether an object is
within the radius of a query object located in some other tile.
So for this case, we build the index on the entire table (Global
Index). Building index dynamically enables CasaDB to fully
utilize the degree of parallelism (DoP) through our spatial
Morsel-drievn parallelism approach. Fig. 5 shows both types
of spatial index.

4



CIndexScan

CStore

CApply

CSpatialJoin

for (int i = work->startIdx; i < work->endIdx; i++) {
    const TProbSource *probSource = &((*probeTile)[i]);

    dispatcher->queryTree(work->tileId, probSource->f4->getEnvelopeInternal(), queryResult);
    for (auto &r: queryResult) {
        auto *indexTuple = (TSource *) r;
        
        if(probSource->f4->intersects(indexTuple->f4.get())) {

            
    MaterializedTupleRef_V1_0_1 t_1;

            t_1.f0 = indexTuple->f0;
            t_1.f1 = probSource->f0;

            dispatcher->storeResult(t_1);
        }
    }
}

CTableScan

Table
A

Table
B

J

(a) Query Plan with 
pipeline breakers

(b) Parsed Physical Query Plan (c) Generated C++ Code

Fig. 4: Code generation

(c) Tile Data

(a) Tile Index

(b) Global Index

Fig. 5: Index organization
E. Morsel-Driven Parallelism

To overcome the limitations of parallelism in exchange
operators in Volcano model, Morsel-driven parallelism [16]
was introduced. It achieves parallelism by running the operator
pipelines in parallel on separate threads and can even change
the degree of parallelism mid-execution. Unlike traditional
parallelism approach where data is equally divided amongst
all the threads, here the data is divided into small fixed-sized
chunks, called morsels. The dispatcher spawns a fixed number
of machine-dependent threads and each of these threads is
assigned a morsel. Once a morsel is done processing, the
worker is assigned another morsel. Spatial workloads are
very different from regular workloads. Some of the tuples
in a spatial workload could take more time to process than
other tuples because of the complexity of the geometric
object they represent. In contrast, the time to process different
tuples from a regular query workload (involving non-spatial
data) is consistent on average. The original morsel-driven
parallelism [16] works well for regular workloads, but for tile-
based spatial workload it is not that straightforward, especially
when it comes to “defining” a morsel and also the inherent
processing skew in spatial-workloads. We propose two differ-
ent algorithms based on morsel-driven parallelism for parallel
spatial query processing: Monolithic Tile-based Morsel-driven
Parallelism (MTMP) and Granular Tile-based Morsel-driven
Parallelism (GTMP). In both of these algorithms, each tile is
treated as morsel, but in the GTMP we introduce granularity at
a sub-morsel level, these are called “granules” and instead of
processing a morsel, we process its granules. The scheduling
of these work units involve a dispatcher assigning a morsel
(in MTMP) or granule (in GTMP) to a worker thread. Once
a thread is done processing its assigned morsel/granule, it re-

ceives the next morsel/granule until all of the morsels/granules
are processed. In our experimental evaluation, we found that
sometimes MTMP struggles with data skew, especially when
both of the tiles in a spatial join operation have a lot of tuples
(i.e. a large morsel), the worker assigned to this morsel takes
a lot of time, while the other workers are done with their
morsels and the overall process is waiting for this worker
to finish. GTMP handles this scenario gracefully by breaking
each morsel into granules and processing them efficiently such
that the other waiting workers can take up the granules from
the big morsel for processing.

1) Monolithic Tile-based Morsel Parallelism (MTMP):
In this algorithm, all the tuples in a tile make one morsel,
essentially we are processing one tile at a time. So, if we
have used a partitioning scheme that divides the data into
512 tiles, for example, then the number of morsels will be
512. The number of tuples in a morsel or the morsel size in
this approach is dynamic, compared to the original morsel-
driven approach, where they set the morsel size to a fixed
number, for instance, 10,000 tuples. The morsel size in our
approach is equal to the number of tuples in a particular tile.
So, the morsel size is dynamic but the number of morsel
is static. This approach was our first attempt at introducing
morsel-driven parallelism in our spatial query engine. It has
three components, MTMPWork, MTMPWorker and MTMPDis-
patcher. MTMPWork defines the work that needs to be done.
It contains the morsel, id of the tile the morsel belongs to
and the kind of processing needs to be done on the morsel,
which is defined by WorkState. This WorkState indicates the
MTMPWorker the kind of work that needs to be done on the
morsel. The work could involve processing the tiles, or waiting
for all the other workers to finish their processing when all
the morsels are assigned to the workers, or the final state
when all the processing is done. Here, the morsel is all of the
tuples inside a particular tile. MTMPWorker does the actual
processing of the morsel. As soon as such a MTMPWorker
is spawned it asks for MTMPWork, and on the basis of the
WorkState of the MTMPWork, it performs the actual work. A
worker is alive as long as there is some work to process. As
can be seen in Algorithm 2 MTMPDispatcher is responsible
for managing the MTMPWorker and assigning the MTMPWork
to them. It neatly divides the dataset into morsels and finally
give them to the workers to perform the actual work when
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they ask for. It also keeps track of the overall state of the
actual processing we are doing and stores the final result. One
key thing about this approach is that it does not need index
to process Spatial Join Operations since the MTMPWorker
knows which tile it is processing and it has access to the
morsel in that particular tile from both of the tables. Fig. 7
shows how this works and Algorithm 2 shows how work is
assigned to the workers. In Section 4 we will show how this
approach works in different kinds of joins.

2) Granular Tile-based Morsel Parallelism (GTMP): This
algorithm introduces the concept of a granule, which is the
basic unit of processing. In MTMP, the basic unit of processing
is a morsel. In GTMP, a morsel is composed of granules.
The number of granules depends on the morsel size of the
corresponding tile. So, the number of granules can be a
dynamic entity, in the same way the morsel size can be
dynamic in MTMP. One of the key differences between both
the approaches is that GTMP uses index for different join
operations. It needs index because a morsel (i.e. a tile) is
divided into granules and each of these granules can be
processed by different workers hence, we need a way to
evaluate the granules within a morsel with those in the other
table in the same morsel. For Spatial Join, GTMP uses tile-
wise index, and for Range Join it uses a global index on
the table because the query object could be present in some
other tiles. It also has a similar GTMPWork component,
which contains the tile id, granule and the WorkState. The
worker here is called GTMPWorker and its functioning is a
bit different from its counterpart in the MTMP, as it uses
index (global or tile-wise Fig. 5). The dispatcher in GTMP
is called GTMPDispatcher and it is responsible for handling
the GTMPWorker and creating granules from each morsel and
assigning them to the workers. Algorithm 3 shows how work
is assigned to the workers and Figure 7 provides a holistic
view of this approach. We show how this algorithm works
with different kinds of join categories in a subsequent section.

3) Distributed MTMP/GTMP: Each node in the cluster
has its own MTMP or GTMP Dispatcher and Worker. The
Dispatcher spawns as many workers as the machine-dependent
threads are supported in a node. The master node in the
cluster runs the Data Assignment module (Figure 2), and is
responsible for dividing the tiles equally and assigning it to
all the nodes including itself. Once each of the nodes loads
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Fig. 7: Granular Tile-based Morsel Parallelism

Algorithm 1: GTPMWorker/MTMPWorker
1 isAlive = true;
2 while isAlive do
3 get next available Work from Dispatcher, by calling

getWork() ;
4 get WorkState from Work;
5 if WorkState == build then
6 noOp;
7 else if WorkState == waitingBuild then
8 noOp;
9 else if WorkState == probe then

10 Iterate the morsel/granule and do the processing according
to the spatial predicate. Store result in global data
structure using Dispatcher;

11 else if WorkState == waitingProbe then
12 Wait for all of the workers to finish the probing
13 else
14 isAlive = false
15 end
16 end

its needed data, it processes the data in morsel/granule-driven
fashion independently. Finally, when the Dispatchers of all
the nodes complete their tasks, the master node aggregates
the results and produces the final output.

Algorithm 2: Pseudo-Code for getWork() MTMPDis-
patcher

Input: dispatcherState, tileIdQueue
Output: MTMPWork

1 if dispatcherState == probingMorsels then
2 if tileIdQueue.isEmpty() then
3 dispatcherState = doneProbingMorsel;
4 return MTMPWork with JobState::waitingProbe;
5 end
6 currentTileId, get current processing tile from

tileIdQueue.front();
7 probeMorsel, get morsel for currentTileId;
8 assign probeMorsel to MTMPWork with

JobState::probe and also include the
currentTileId;

9 return MTMPWork
10 else if dispatcherState == doneProbingMorsels then
11 if all workers are done probing then
12 return MTMPWork with JobState::done;
13 else
14 return MTMPWork with JobState::waitingProbe;
15 end
16 else
17 return MTMPWork with JobState::done;
18 end
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Algorithm 3: Pseudo-Code for getWork() GTMPDis-
patcher

Input: dispatcherState, tileIdQueue, granuleSize,
granuleStartIndex, granuleEndIndex

Output: GTMPWork
1 if dispatcherState == probingMorsels then
2 if tileIdQueue.isEmpty() then
3 dispatcherState = doneProbingMorsel;
4 return GTMPWork with JobState::waitingProbe;
5 end
6 currentTileId, get current processing tile from

tileIdQueue.front();
7 probeMorsel, get morsel for currentTileId;
8 granuleStartIndex = granuleEndIndex;
9 granuleEndIndex = granuleStartIndex +

granuleSize;
10 if granuleEndIndex >= probeMorsel.length()

then
11 granuleEndIndex = probeMorsel.length();
12 tileIdQueue.pop()
13 end
14 Slice a granule from probleMorsel using

granuleStartIndex and granuleEndIndex and
assign it to GTMPWork with JobState::probe and also
include the currentTileId;

15 if granuleEndIndex >= probeTuples.length()
then

16 granuleStartIndex = granuleEndIndex = 0;
17 end
18 return GTMPWork
19 else if dispatcherState == doneProbingMorsels then
20 if all workers are done probing then
21 return GTMPWork with JobState::done;
22 else
23 return GTMPWork with JobState::waitingProbe;
24 end
25 else
26 return GTMPWork with JobState::done;
27 end

IV. QUERY PROCESSING

In the following sections we discuss how Monolithic Tile-
based Morsel-driven Parallelism (MTMP) and Granular Tile-
based Morsel-driven Parallelism (GTMP) support a few differ-
ent types of Joins. The other Join categories are omitted due
to space constraints.

A. Spatial Join processing

Spatial Join finds object pairs from two tables which satisfy
a spatial predicate like, ST_INTERSECTS, ST_CROSSES
and others. In a non-indexed Join operation, there are two
nested loops, where the loops are for iterating one of the two
tables involved in the join. We compare the tuples from the
outer (loop) table with each of the tuples in the inner (loop)
table and then do spatial predicate evaluation (Refinement
step) on both of the tuples. If it (i.e. tuple pairs) successfully
passes the predicate evaluation, we add it to the final result.
In the case of an index-based Join operation, we have a pre-
built index on smaller table. The outer loop is to iterate the
bigger table and then inside that loop we do index lookup
using the MBR of the outer-loop tuple (Filter step). We iterate
the objects returned by the index lookup and perform the
Refinement to get the final output. Partitioning of dataset into
tiles helps in the additional filtering of the tuples before the
Refinement step in the sense that, we do not have to iterate

the entire table. Instead, we just need to iterate the tuples
belonging to the same tile because it is ensured that the MBR
of the tuples inside a tile are close to each other, if not touching
or overlapping. Essentially, partitioning the dataset into tiles,
helps in reducing the search space significantly, without using
an index.

In case of MTMP, since each tile corresponds to a morsel,
we just need to perform the Refinement step on the morsels
from both of the tables belonging to the same tile. The Filter
step is already done by using the tiles, and so we do not need
to use index in this. We can directly go to the Refinement
step. MTMPWorker receives a tiled id, and its associated
morsels from both the tables and then it uses the non-indexed
nested loop join approach to do the final predicate evaluation
(Refinement). The main advantage of this algorithm is that, it
achieves faster Join processing without using index.

In GTMP, morsels are divided into granules and these
granules are then assigned to the GTMPWorker. So, a GTM-
PWorker worker could be processing a chunk of tuples (gran-
ules) in a tile (morsel), while another GTMPWorker could be
processing a different chunk of tuples (granule) of the same
tile (morsel). Hence, if we do predicate evaluation on the
granules of both the tables then we will get incomplete/partial
results, as we are not comparing against the entire morsel (tile).
So, to get complete results, we pre-built Tile-wise index and
then perform the Filter step with the granules using the index.
After the Filter step, we use the result of index lookup and do
the final predicate evaluation between granules and the index
query result to get the final output.

B. Spatial Range Join processing

Spatial Range Join finds object pair where the objects are
within a defined radius of the other object (query object) from
the other table. ST_DIWITHIN(geomA, geomB, 1) can
be used to implement queries involving radius. This spatial
predicate checks if geomA is within 1 unit distance of geomB.
We can use the global index in the Filter stage, and can make
our query execute faster by eliminating a lot of tuples. We can
not use tile-based index here because our query object and the
object from the table could be outside of the tile.

In MTMP, we create morsels from the query object table
and we use the pre-built global index on the other table.
We then create a buffer object on the query object using the
ST_BUFFER and the radius mentioned in the ST_DIWITHIN,
and then use the buffered object to query the global index. The
objects returned by the index is then sent through the actual
predicate evaluation to get the final result. By using the global
index, we can effectively filter a lot tuples from the other table.

GTMP is very similar to MTMP in this join operation. It
also uses the pre-built global index and creates the granules
from the query object morsels. It uses the same approach of
creating buffer objects and then querying the buffer objects
against the index to filter out tuples. Finally, the tuples from the
index and the query granules are sent to predicate evaluation
to produce the final output.
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V. EXPERIMENTAL EVALUATION

In this section, we describe the experimental setup and
datasets we used and the types of queries we ran to evaluate
our system. Finally, we compare our system’s performance
with Apache Sedona (previously, GeoSpark) and Citus [20].

A. Experimental Setup

We used a cluster of 6 machines, each having a Dual-Core
AMD Opteron 2222 Processor clocked at 3Ghz and 16 GB
main memory. We use JDK 11 for our code generator and
use UPC++ 2023.9.0 to run the distributed code. We compile
generated UPC++ code using g++ version 9.4.0.

B. Datasets

We use two different datasets for our experiments, namely,
TIGER [17] California and OpenStreetMap [18] (OSM). Ta-
ble I and Table II provides more details about these datasets.

Table Name Geometric Shape No. of tuples
Arealm Polygon 6,708
Areawater Polygon 40,799
Pointlm Point 49,837
Edges Line 4,251,911

TABLE I: TIGER Dataset

Table Name Geometric Shape No. of tuples
poi point uk Point 907,914
bld poly uk Polygon 12,982,472
lwn poly uk Polygon 2,742,757
rds line uk Line 593,706

TABLE II: OSM Dataset for UK

C. Queries

We evaluated a set of Join queries for each of the datasets,
which involves spatial predicates, such as ST INTERSECTS,
ST TOUCHES, ST CROSSES, ST OVERLAPS and
ST WITHIN. Queries for both the datasets are listed in
Table III and Table IV.

Name Query

TIGER Q1
select arealm.id, areawater.id from arealm join
areawater on ST TOUCHES(arealm.geom, areawa-
ter.geom)

TIGER Q2 select edges.id, arealm.id from edges join arealm on
ST CROSSES(edges.geom, arealm.geom)

TIGER Q3
select edges.id, edges2.id from edges join
edges as edges2 on ST CROSSES(edges.geom,
edges2.geom)

TIGER Q4 select edges.id, areawater.id from edges join areawa-
ter on ST CROSSES(edges.geom, areawater.geom)

TIGER Q5

select areawater1.id, areawater2.id from
areawater1 join areawater as areawater2
on ST OVERLAPS(areawater1.geom,
areawater2.geom)

TIGER Q6
select pointlm.id, areawater.id from pointlm join
areawater on ST WITHIN(pointlm.geom, areawa-
ter.geom)

TIGER Q7
select * from pointlm join areawater on
ST DWITHIN(pointlm.geom, areawater.geom,
1)

TIGER Q8
select * from pointlm join areawater on
ST DISTANCE(pointlm.geom, areawater.geom)
>= 1

TABLE III: TIGER dataset queries
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D. Experiments

CasaDB generates UPC++ code for each of the queries, and
so we measure the code generation time. Finally, we measure
the execution time on 2, 4 and 6 node clusters. We then
compare our system with Apache Sedona and Citus.

1) Code Generation: Code generation times for TIGER
queries are listed in Figure 8. As can be seen, the code
generation times are not significant compared to the actual
spatial query execution times (as can be seen in the next few
sections).

2) Execution time breakdown: Figure 9 shows the query
execution time breakdown for TIGER Q3 with GTMP algo-
rithm. The refinement phase takes up 84% of the execution
time, while filtering phase took only 5% of the time. Index
creation took only 1%, and creation of granules for GTMP
took 5% of the time. As expected the refinement phase is the
most dominant phase in spatial query processing.

3) Partitioning granularity analysis: We conducted ex-
periments involving tiles granularity. Figure 10 presents the
execution time of TIGER queries on 2, 4 and 6 node clusters
with 512, 1024, 2048 and 4096 tile sizes. For long-running
queries (TIGER Q2, TIGER Q3 and TIGER Q4), the setting
of 4096 tiles performs better than all the others and scales
well with increasing the nodes in the cluster, however, it
is interesting to note that short running queries, such as
TIGER Q1, TIGER Q6, the setting of 1024 tiles performs
better across all nodes. This is expected because the short
running queries usually process relatively fewer tuples. In case
of higher tile granularity, the cost of iterating additional tiles
incurs more overhead than the actual processing of tiles.

4) Performance analysis of GTMP and MTMP: We eval-
uate the performance of GTMP and MTMP by running the
TIGER queries listed in Table III on 2, 4 and 6 nodes cluster
and measured the execution time of all queries. As we found
in the previous section 4096 partition granularity works best
for most algorithms, so for these experiments we used 4096
tiles setting. For the majority of the queries both, GTMP
and MTMP have almost similar execution times apart from
the queries involving the bigger tables (Edges) as shown in
Fig. 10. For TIGER Q3, GTMP is roughly 2x faster than
MTMP. This is because of the high degree of data skew in
the tables (Edges) involved in this query. While MTMP’s
Dispatcher sometimes provides large morsels to its workers,
GTMP’s Dispatcher breaks the large morsels into granules
and gives them to its workers. As a result, GTMP’s workers
complete their work more quickly and then move on to their
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Name Query
OSM Q1 select * from rds lin uk join bld poly uk on ST TOUCHES(rds lin uk.geom, bld poly uk.geom)
OSM Q2 select * from rds lin uk join lwn poly uk on ST CROSSES(rds lin uk.geom, lwn poly uk.geom)
OSM Q3 select * from poi point uk join lwn poly uk on ST WITHIN(poi point uk.geom, lwn poly uk.geom)
OSM Q4 select * from bld poly uk join lwn poly uk on ST OVERLAPS(bld poly uk.geom, lwn poly uk.geom)

TABLE IV: OSM dataset queries
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Fig. 10: GTMP performance with different partition granularity for TIGER dataset

next work. GTMP shows much more resilience with data skew
than MTMP. GTMP outperforms MTMP in range join and
distance join queries, it is 2.4x to 2.6x faster for TIGER Q7
where global index is used, and it is upto 5.6x for TIGER Q8
without global or tile-wise index.

5) Scalability of our system: Figure 12 shows the scalabil-
ity of CasaDB using our best configuration, with 4096 tiles
configuration and GTMP algorithm, on the cluster. For long
running queries like TIGER Q3, our systems performs 1.7x to
2.6x better on 4 and 6 nodes respectively when compared to 2
nodes, and also for TIGER Q4, it scales well with 2x to 2.7x
performance boost on the cluster. Short running queries like
TIGER Q1 also scales 1.4x to 1.9x on 4 and 6 nodes, and
TIGER Q6 scales 1.5x to 3.45x. Overall, the system shows
significant scalability on increasing cluster size.

6) Comparison with Apache Sedona and Citus: We evalu-
ate CasaDB against Apache Sedona and Citus, Fig. 13 shows
execution times for TIGER queries running on 6-nodes cluster.
CasaDB is significantly better than Citus DB and outperforms
Apache Sedona in all of the queries in all settings. CasaDB’s
fastest running query on TIGER dataset was TIGER Q6 and
it took 212 ms to finish, while the same query took 414 ms to
execute on Citus and roughly 32 seconds on Sedona. CasaDB’s
longest-running TIGER dataset query was TIGER Q3, and
it took 48.4 seconds to execute, while on Citus it took 68.4
seconds to execute and Sedona took roughly 4 mins. CasaDB
is 71x faster than Sedona and 2.1x faster than Citus for
TIGER Q1. It is 151x faster for TIGER Q6 than Sedona and
roughly 2x faster than Citus. Overall, CasaDB scales well
compared to Sedona and Citus and Spatial Joins are 2x to
151x faster on TIGER dataset.

We also evaluated the performance of CasaDB on OSM
dataset on 6 nodes. Fig. 14 shows execution times for OSM
queries running on 6-nodes cluster. Longest-running query,
OSM Q1 took roughly 19 minutes to execute on CasaDB,
Citus took 28.4 minutes and Sedona took roughly 11.5 hours to
execute, OSM Q4 took 17 minutes to finish on CasaDB, while
Citus took 26.7 minutes to finish and Sedona took a massive
17.6 hours to execute it. The short running query, OSM Q3
performed best on Citus with just 10.3 seconds, while CasaDB
took 1.8 minutes to finish and Sedona finished in 19 minutes.
Overall, CasaDB is at least 10x to 62x faster than Sedona and

atmost 1.56x times faster than Citus DB on OSM dataset.

VI. RELATED WORK

The topic of scalable processing of spatial data has a long
history. Paradise [26] is one of the earliest parallel databases
developed for scalable, geo-spatial data storage and retrieval.
Paradise is based on an object-relational data model that
supports an extended version of SQL for spatial queries. The
PostGIS spatial extension of PostgreSQL played a role in
popularizing spatial SQL query processing.

The advent of MapReduce and an open-source implementa-
tion Hadoop [27], resulted in researchers introducing Hadoop-
based spatial data systems, including SpatialHadoop [6] and
Hadoop-GIS [5]. To take advantage of the aggregate mem-
ory pool of a compute cluster, Spark [28] has been in-
troduced, which offers significantly better performance than
Hadoop. Subsequently, several Spark-based spatial systems
were proposed. They include Apache Sedona [1] (previously,
GeoSpark), SpatialSpark [2], Simba [3], STARK [29], and
LocationSpark [4]. As noted by Yu et al. [7], among the
Spark-based systems only Sedona supports standard spatial
extensions to SQL [30]. Another limitation of some of these
systems is that they support only point objects or MBR-based
filter oriented spatial query processing. Similar findings were
reported by a study [19].

The focus of the previous systems are long-running spatial
queries involving complex operations such as spatial join. A
few spatial data systems has been proposed that aim at frequent
updates and relatively short-running queries on points, such as
spatial range and kNN queries. MD-HBase [31] is on of the
earliest systems in this category, followed by systems such as
DISTIL+ [32]. These systems do not support SQL.

VII. CONCLUSION

In this paper, we have presented a compilation-based dis-
tributed spatial query processing system, which introduces
morsel-driven parallelism in distributed data systems. We have
also extended the original morsel-driven parallelism approach
for spatial query processing and have introduced Monolithic
Tile-based Morsel-driven Parallelism (MTMP) and Granular
Tile-based Morsel Parallelism (GTMP) for different types of
spatial joins. Through our experiments, we determined which
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Fig. 11: GTMP vs. MTMP for TIGER queries

Fig. 12: CasaDB on a cluster with 2, 4, 6 nodes with TIGER dataset

Fig. 13: CasaDB vs. Citus and Sedona on 6 nodes with TIGER dataset

tile-partitioning scheme works best for MTMP and GTMP.
We showed how GTMP achieves better performance due to
its skew resilience. We compared our system with Apache
Sedona and Citus-Distributed Postgres. Experimental results
suggest that our systems is 71x to 151x faster than Apache
Sedona on TIGER dataset and 10x to 62x faster on OSM UK
datasets on 6 nodes cluster. It is 1.5x to 2x faster than Citus
on OSM and TIGER datasets.
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