
Computer Networks 197 (2021) 108346

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Achieve space-efficient key management in lightning network✩

Guiyi Wei a, Xiaohang Mao a, Rongxing Lu b, Jun Shao a,∗, Yunguo Guan b, Genhua Lu a

a Zhejiang Gongshang University, Hangzhou 310018, China
b The Faculty of Computer Science, University of New Brunswick, Fredericton E3B 5A3, Canada

A R T I C L E I N F O

Keywords:
Lightning network
Bitcoin
Space efficiency
Hash function
Trapdoor one-way function

A B S T R A C T

The low transaction throughput, high transaction latency, and unfriendly micropayment are the main obstacles
hindering Bitcoin use in time-sensitive environments. To mitigate these problems, various solutions have been
proposed. The lightning network (𝖫𝖭) is considered one of the most promising ones, and it has been widely
deployed in different versions. However, the 𝖫𝖭 itself is subject to a scalability problem due to the used
channel state revocation technique. It especially requires (𝑛̄) storage cost to store the private keys, where
𝑛̄ is the number of transactions that happened in the channel and expected to be infinite. Though there are
some techniques to resolve this problem, none of them is compatible with the current Bitcoin system. Aiming
at solving this dilemma, in this paper, we propose two space-efficient Bitcoin-compatible key management
schemes for the 𝖫𝖭, based on the hash function and trapdoor one-way function, respectively. Both schemes
reduce the storage complexity from (𝑛̄) to (1). The detailed security analysis shows that our schemes hold
the security level of the original 𝖫𝖭 or its variants. The extensive experimental results demonstrate that our
proposed schemes are efficient and feasible, with a significant reduction in storage overhead.
1. Introduction

Bitcoin, proposed in 2008 [1], has become the most popular cryp-
tocurrency in recent years. According to the report from the tokenin-
sight [2], the annual spot exchanges trading volume of cryptocurrency
in 2019 reached USD 13.8 trillion, of which the total Bitcoin trading
volume accounts for 48.29%. Furthermore, Bitcoin has been accepted
as a legal currency by several countries and unrestricted in 128 of
257 countries/regions [3]. However, the popularity of Bitcoin does
not make any difference for its imperfections, namely low transaction
throughput, high transaction latency, and unfriendly micropayment.

• Low transaction throughput: The Bitcoin network can only handle
seven transactions per second (tps), which is far from the peak
volume of 47,000 tps of Visa [4].

• High transaction latency: According to the rules in the Bitcoin
network, blocks are generated with the speed of one block in
10 min, and each transaction can be confirmed only after six
blocks, which is unacceptable for time-sensitive tasks.

• Unfriendly micropayment: Transactions are not recorded into the
blockchain for free, and the transaction fee is only related to the

✩ This work was supported by the National Key Research and Development Program of China [2019YFB1804500], the Natural Science Foundation of Zhejiang
Province [grant number LZ18F020003], the National Natural Science Foundation of China [grant number U1709217], NSERC Discovery Grants (04009), and
LMCRF-S-2020-03.
∗ Corresponding author.

E-mail addresses: weigy@zjgsu.edu.cn (G. Wei), mxiaohangg@gmail.com (X. Mao), rlu1@unb.ca (R. Lu), chn.junshao@gmail.com (J. Shao),
yguan4@unb.ca (Y. Guan), genhualu22@gmail.com (G. Lu).

transaction size but not the number of bitcoins sent. Hence, the
transaction fee might be much higher than the actual value of
bitcoins sent.

In the presence of the above challenges, the payment channel tech-
nique [5] has become the most prominent scaling solution, where al-
most all the transactions happen without interacting with the
blockchain. The main idea behind the payment channel is to take
the channel as a local ledger maintained only by the two involving
parties instead of all the parties in the Bitcoin system. Among all the
transactions in the channel, only the funding transaction opening the
channel and the settlement transaction closing the channel are required
to be recorded on the blockchain. Other intermediate transactions
updating the local ledger state are processed off-chain and maintained
among these two parties only. These intermediate transactions are also
named off-chain transactions. As we know, once the transactions are
only maintained between two parties, we can have high transaction
throughput with low latency freely. Hence, the three imperfections of
Bitcoin are solved.

The payment channel can be easily extended to the payment chan-
nel network concept by combining the channels into paths, which is
vailable online 26 July 2021
389-1286/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2021.108346
Received 15 February 2021; Received in revised form 2 July 2021; Accepted 19 Ju
ly 2021

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:weigy@zjgsu.edu.cn
mailto:mxiaohangg@gmail.com
mailto:rlu1@unb.ca
mailto:chn.junshao@gmail.com
mailto:yguan4@unb.ca
mailto:genhualu22@gmail.com
https://doi.org/10.1016/j.comnet.2021.108346
https://doi.org/10.1016/j.comnet.2021.108346
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2021.108346&domain=pdf

Computer Networks 197 (2021) 108346G. Wei et al.
usually realized by the hash timelock contract [6,7]. Among various
payment channel networks, the lightning network (𝖫𝖭) [7] is the most
widely deployed one on top of Bitcoin and has been implemented in dif-
ferent versions [8–10]. By the end of 2019, there are more than 10,000
nodes, 35,000 channels, and 1000 bitcoins in the 𝖫𝖭. Many lightning
payment wallets, such as Tippin.me [11] and Wallet of Satoshi [12],
have been issued, and more and more well-known cryptocurrency pay-
ment gateways have also started to integrate the 𝖫𝖭 in operation [13].
Furthermore, applications including marketplace [14], games [15], and
other fields [16] based on the 𝖫𝖭 have also been implemented.

Although the 𝖫𝖭 can alleviate the Bitcoin network’s scalability
problem, the 𝖫𝖭 itself is subject to a scalability problem due to the
used state revocation technique. Specifically, to revoke a previous
off-chain transaction, both parties should exchange their private keys
corresponding to the previous off-chain transactions. With these private
keys, the honest party can obtain all the bitcoins in the channel if
his/her counterparty uploads one of the previous off-chain transactions
to the blockchain. It is easy to see that the complexity for storing the
keying materials is (𝑛̄), where 𝑛̄ is the number of previous off-chain
transactions. Under an ideal condition, the value of 𝑛̄ can be infinite as
expected since each channel could be part of many payment paths. In
this case, even if the size of a single private key is relatively small, the
storage cost would be relatively high when 𝑛̄ becomes extremely large.
Although there exist several techniques that can optimize the storage
overhead of the 𝖫𝖭 and achieve (1) storage cost [17–21], none of them
is Bitcoin-compatible.

In this paper, aiming at solving the space efficiency issue of the
𝖫𝖭, we would like to propose two space-efficient key management
schemes, which achieve (1) storage cost for both parties without
any modification on the core of the current Bitcoin system or the 𝖫𝖭.
Hence, our proposed schemes are compatible with the variants of the
𝖫𝖭 [22,23]. These two schemes are based on the hash function [24]
and trapdoor one-way function [25], respectively. The key idea in these
two schemes stems from the following observation: To achieve (1)
storage cost, we should guarantee that the current private key sent
to the counterparty can derive previous private keys by anyone but
cannot generate future private keys. On the other hand, the owner can
use the private key to generate future private keys. This observation
leads to the demand of the one-wayness and trapdoor; hence the hash
function and trapdoor one-way function are employed in this paper.
Our contributions in this paper can be summarized as follows.

• To the best of our knowledge, our paper is the first one focusing
on solving the space efficiency issue of the 𝖫𝖭. We reduce the
storage overhead for keying materials in the 𝖫𝖭 from (𝑛̄) to (1).
In other words, we propose two key management mechanisms for
the 𝖫𝖭.

• Compared to the previous related techniques, our proposal is
Bitcoin-compatible. Our proposed schemes especially do not re-
quire a new consensus rule for Bitcoin script, avoid forks in the
Bitcoin blockchain, and facilitate the deployment of the existing
𝖫𝖭.

• The detailed security analysis shows that our proposed schemes
do not reduce the security strength of the original/revised 𝖫𝖭. We
also implement a prototype to show the feasibility and efficiency
of our proposal.

The remainder of this paper is organized as follows. In Section 2, we
formalize the system model and security model, and identify our design
goals. Then, we give some preliminaries, including the definitions of
hash function and trapdoor one-way function in Section 3. In Section 4,
we present the detailed descriptions of our proposed schemes and
provide the security analysis, followed by the performance evaluation
in Section 5. Section 6 reviews the related works. In the end, Section 7
2

gives the conclusions of our paper.
Fig. 1. The Revocable Sequence Maturity Contract (RSMC) used in the lightning
network.

2. System model and design goals

In this section, we formalize our system model, especially the Re-
vocable Sequence Maturity Contract, and security model, and identify
our design goals.

2.1. System model—RSMC

The 𝖫𝖭 [7] is a second layer payment protocol that runs on top of
blockchain-based cryptocurrencies such as Bitcoin to solve the scalabil-
ity problem. It consists of two kinds of transaction contracts: Revocable
Sequence Maturity Contract (𝖱𝖲𝖬𝖢) and Hashed Timelock Contract
(𝖧𝖳𝖫𝖢). The 𝖱𝖲𝖬𝖢 is used to realize a lightning payment channel,
and the 𝖧𝖳𝖫𝖢 aims to chain multiple lightning channels to construct
secure transfers through multiple hops between two nodes. The space
efficiency issue we aim to solve in this paper is due to the channel state
revocation mechanism used in the 𝖱𝖲𝖬𝖢. Hence we only review the
𝖱𝖲𝖬𝖢 in this section but omitting the 𝖧𝖳𝖫𝖢. Interested readers please
refer to the lightning network white paper [7].

There are four kinds of transactions in the 𝖱𝖲𝖬𝖢: one funding
transaction (𝗍𝗑𝖿𝗎𝗇𝖽), multiple commitment transactions (𝗍𝗑𝖼𝗈𝗆), multi-
ple revocable delivery transactions (𝗍𝗑𝗋𝖽), and multiple breach rem-
edy transactions (𝗍𝗑𝖻𝗋). Only the funding transaction, one commitment
transaction, and one revocable delivery (breach remedy) transaction
need to be submitted to the blockchain. For easy description, we name
the two involving parties in the 𝖱𝖲𝖬𝖢 as Alice and Bob, respectively.

𝗍𝗑𝖿𝗎𝗇𝖽 has two inputs from Alice and Bob and one input representing
a 𝖴𝖳𝖷𝖮 (unspent transaction output) with a 2-of-2 multi-signature
address associated with Alice and Bob. Alice or Bob cannot submit 𝗍𝗑𝖿𝗎𝗇𝖽
right after its generation. It is because Alice/Bob can lock the coins
of the counterparty in 𝗍𝗑𝖿𝗎𝗇𝖽 by refusing to provide the corresponding
signature. To dispense with this threat, Alice and Bob should prepare a
𝗍𝗑𝖼𝗈𝗆 for each other to allocate balance in the 𝖴𝖳𝖷𝖮.

Let us take Alice as an example for simplicity. Alice generates her
𝗍𝗑𝖼𝗈𝗆 with the 𝖴𝖳𝖷𝖮 as the input and two outputs (see 𝖢𝟣𝖻 in Fig. 1).
One output (the output 1 in 𝖢𝟣𝖻 in Fig. 1) sends coins directly to Alice,
the other output (the output 0 in 𝖢𝟣𝖻 in Fig. 1) sends coins to another
2-of-2 multi-signature address shared between Alice and Bob. The latter
output accompanies a 𝗍𝗑𝗋𝖽 with Alice’s signature and a time-locked
output to Bob (see 𝖱𝖣𝟣𝖻 in Fig. 1). With 𝗍𝗑𝖼𝗈𝗆 and 𝗍𝗑𝗋𝖽, the balance in the
𝖴𝖳𝖷𝖮 of 𝗍𝗑𝖿𝗎𝗇𝖽 is allocated to two parts. One goes directly to Alice; the
other goes indirectly to Bob with a time delay. Alice sends (𝗍𝗑𝖼𝗈𝗆, 𝗍𝗑𝗋𝖽)
to Bob, and she can submit her part of 𝗍𝗑𝖿𝗎𝗇𝖽 to the Bitcoin blockchain
after receiving (𝗍𝗑′𝖼𝗈𝗆, 𝗍𝗑

′
𝗋𝖽
) (see 𝖢𝟣𝖺 and 𝖱𝖣𝟣𝖺 in Fig. 1, respectively)

from Bob.
When the balance state in the 𝖴𝖳𝖷𝖮 changes, Alice has to prepare

a new transaction pair (𝗍𝗑𝖼𝗈𝗆, 𝗍𝗑𝗋𝖽) (see 𝖢𝟤𝖻 and 𝖱𝖣𝟤𝖻 in Fig. 1, re-
spectively) accordingly and send them to Bob. To revoke the previous
commitment transaction, Alice is required to send Bob her private key

Computer Networks 197 (2021) 108346G. Wei et al.

t

3

t
g
w
t
q

f
o
(
m
𝑒

4

o
s
t
t
d
p
n
v

4

4

r
i
f
s

O
m

corresponding to the 2-of-2 multi-signature address used in the previous
𝗍𝗑𝖼𝗈𝗆.

When Alice chooses to close the payment channel, she can submit
he newest (𝗍𝗑′𝖼𝗈𝗆, 𝗍𝗑

′
𝗋𝖽
) (𝖢𝟤𝖺 and 𝖱𝖣𝟤𝖺 in Fig. 1 for example) with her

signatures to the Bitcoin blockchain. Bob can receive the coins as soon
as the transaction is recorded in the Bitcoin blockchain, while Alice
receives the coins after the time delay specified in 𝗍𝗑′

𝗋𝖽
. Due to the state

revocation mechanism used in the 𝖱𝖲𝖬𝖢, Alice would not submit the
previous (𝗍𝗑′𝖼𝗈𝗆, 𝗍𝗑

′
𝗋𝖽
). If so, Bob can use his private key and the private

key from Alice to generate 𝗍𝗑′
𝖻𝗋

(see 𝖡𝖱𝟣𝖺 in Fig. 1 if the submitted 𝗍𝗑′𝖼𝗈𝗆
is 𝖢𝟣𝖺 in Fig. 1) to get the coins immediately.

The state revocation mechanism used in the 𝖱𝖲𝖬𝖢 can guarantees
that any party would not submit the previous commitment and revo-
cable delivery transaction pair. However, at the same time, Alice and
Bob should store all the private keys received from the counterparty,
which causes the space efficiency issue. In this paper, we aim to solve
this problem without changing any main working flow in the 𝖱𝖲𝖬𝖢.

2.2. Security model

In this paper, we assume that the underlying 𝖫𝖭 is already secure.
Although there are many attacks on the current 𝖫𝖭 system [22,23],
most of them do not target 𝖱𝖲𝖬𝖢 we try to improve but other parts of
the 𝖫𝖭, which makes our security assumption on the 𝖫𝖭 reasonable.
We also assume that the involving parties, Alice and Bob, could be
malicious. They would try their best to obtain the coins in the funding
transaction. For example, Alice would reveal the private keys for future
commitment transactions from the private key sent from Bob. Alice also
wants to submit the previous commitment transaction without losing
the coins stored in the revocable delivery transaction.

2.3. Design goal

Based on the above system model and security model, our design
goal is to propose a space-efficient key management mechanism for the
𝖱𝖲𝖬𝖢 of 𝖫𝖭 to reduce the storage overhead without losing the security
of the original 𝖫𝖭. Specifically, the following properties our proposal
should satisfy.

• Inheritance: Our proposal inherits all the good properties of the
original 𝖫𝖭, such as instant payments and Bitcoin-compatibility.

• Low Storage: This paper’s primary goal is to achieve space-
efficient 𝖱𝖲𝖬𝖢 for the 𝖫𝖭. The involving party in the 𝖱𝖲𝖬𝖢 only
needs (1) storage to generate his/her future private keys and
derive the previous private keys of the counterparty.

• Security: Our proposal will not affect the security of the under-
lying 𝖫𝖭. In particular, (1) Alice/Bob cannot derive the private
keys for future commitment transactions of Bob/Alice from the
private key sent from Bob/Alice. (2) Alice/Bob cannot send an
invalid private key to Bob/Alice as the previous commitment
transaction’s key.

3. Preliminaries

Before delving into the design of our proposed space-efficient key
management in the 𝖫𝖭, we would like to review some basic tools,
including the hash function [24] and trapdoor one-way function [26],
which are used in our proposal.

3.1. Hash function

The hash function is a fundamental building block in many crypto-
graphic systems. Our first solution for the space efficiency issue is also
based on the hash function.

In general, the hash function converts a message of arbitrary length
to a message digest of predetermined length. The main security require-
3

ment of the underlying hash function 𝐻 in our proposal is one-wayness.
Fig. 2. The relationship among the private keys in our first scheme.

In particular, it is always easy to compute ℎ = 𝐻(𝑚) with a message
𝑚; however, it is computationally impossible to compute 𝑚 satisfying
ℎ = 𝐻(𝑚) given the value of ℎ.

.2. Trapdoor one-way function

The trapdoor one-way function is a special kind of one-way func-
ion. Generally speaking, it is hard to compute 𝑥 satisfying 𝑦 = 𝑓 (𝑥)
iven the one-way function 𝑓 and one output 𝑦 of 𝑓 (⋅). While it
ould become feasible if the one has the knowledge of the underlying

rapdoor for the trapdoor one-way function 𝑓 . This special property is
uite useful in our proposal.

RSA cryptosystem [27] is one of the famous trapdoor one-way
unctions. In this paper, we make use of RSA algorithm to implement
ur second proposed scheme. Especially, 𝑦 = 𝑓 (𝑥) becomes 𝑦 = 𝑥𝑒

mod 𝑁) and 𝑥 = 𝑓−1(𝑦) becomes 𝑥 = 𝑦𝑑 (mod 𝑁), where 𝑁 is the RSA
odulus, (𝑁, 𝑒) is the public key of RSA, 𝑑 is the private key of RSA,
𝑑 ≡ 1 (mod 𝜙(𝑁)), and 𝜙(⋅) is the Euler’s totient function.

. Our space-efficient key management for the 𝗥𝗦𝗠𝗖

This section gives two schemes for improving the key management
f state revocation mechanism in the 𝖱𝖲𝖬𝖢. The main idea in these two
chemes is to divide key generation into two directions: one is deriving
he old keys, the other is generating the new keys. Everyone can do
he former one, while only the one with some extra information can
o both. Furthermore, these schemes do not modify the 𝖫𝖭 backbone
rotocol, and their implementations do not need smart contracts or any
ew script code. For saving space, we omit the steps for checking the
alidity of transactions in this section.

.1. Hash-based scheme

.1.1. Description of our hash-based scheme
The system parameter in our first scheme includes two security pa-

ameters 𝓁,𝓁′, the upper limit 𝑛 of commitment transactions happening
n the 𝖱𝖲𝖬𝖢, a hash function 𝐻 ∶ {0, 1} → {0, 1}𝓁′ , and a key derivation
unction 𝖪𝖣𝖥 that generates the private key of the underlying signature
cheme used in the blockchain.

pen the payment channel. Alice and Bob do the following steps sym-
etrically. We take Alice as an example for simplicity.

1. Choose two random elements 𝗌𝗄𝖠,0 and 𝑠𝑘𝐴 from the range of
private key of the underlying signature and {0, 1}𝓁 , respectively.

2. Compute 𝑠𝑘𝐴,1 = 𝐻(𝑠𝑘𝐴,2) and 𝗌𝗄𝖠,1 = 𝖪𝖣𝖥(𝑠𝑘𝐴,1), where 𝑠𝑘𝐴,𝑖 =
𝐻(𝑠𝑘𝐴,𝑖+1) for 𝑖 ∈ {1, 𝑛−1} and 𝑠𝑘𝐴,𝑛 = 𝐻(𝑠𝑘𝐴) as shown in Fig. 2.

3. Compute two public keys 𝗉𝗄𝖠,0 and 𝗉𝗄𝖠,1 corresponding to 𝗌𝗄𝖠,0
and 𝗌𝗄𝖠,1, respectively. Furthermore, send (𝗉𝗄𝖠,0, 𝗉𝗄𝖠,1) to Bob via
an authenticated channel.

4. By using 𝗉𝗄𝖡,0 from Bob and 𝗉𝗄𝖠,0, Alice generates her part of the
funding transaction. Note that the input of the funding trans-
action is one of Alice’s 𝖴𝖳𝖷𝖮s, and the 2-of-2 multi-signature
address in the output corresponds to 𝗉𝗄 and 𝗉𝗄 .
𝖠,0 𝖡,0

Computer Networks 197 (2021) 108346G. Wei et al.

p

4

m
k
m
t
f
a
m

5. With 𝗉𝗄𝖡,1 from Bob, Alice generates one commitment transac-
tion and one revocable delivery transaction. In this step, Alice
needs to use 𝗌𝗄𝖠,0 to sign the commitment transaction and re-
vocable delivery transaction, and the 2-of-2 multi-signature ad-
dress in the commitment transaction corresponds to (𝗉𝗄𝖠,0, 𝗉𝗄𝖡,1).

6. Send the resulting funding transaction, commitment transaction,
and revocable delivery transaction to Bob via an authenticated
channel.

7. Store (𝑠𝑘𝐴, 𝗌𝗄𝖠,0, 𝑠𝑘𝐴,1, 𝗉𝗄𝖡,1) locally. Alice also needs to store
the received commitment transaction and revocable delivery
transaction from Bob.

By combining Alice and Bob’s parts of the funding transaction, we
can have the complete funding transaction submitted to the Bitcoin
blockchain. Note that except for steps 1, 2, and 7, the rest of the steps
above are the same as those in the original 𝖫𝖭.

Update the channel state. When the balance state of the funding trans-
action changes, Alice and Bob do the following steps symmetrically. We
take Alice as an example for simplicity. Assume this is the 𝑖th (1 < 𝑖 ≤ 𝑛)
time to change the balance state. In the following, we use the value of
𝑖 as the subscript of the commitment.

1. Compute 𝑠𝑘𝐴,𝑖 from 𝑠𝑘𝐴 as shown in Fig. 2, and 𝗌𝗄𝖠,𝑖 from 𝗌𝗄𝖠,𝑖 =
𝖪𝖣𝖥(𝑠𝑘𝐴,𝑖).

2. Compute the public key 𝗉𝗄𝖠,𝑖 of 𝗌𝗄𝖠,𝑖. Furthermore, send 𝗉𝗄𝖠,𝑖 to
Bob via an authenticated channel.

3. After receiving 𝗉𝗄𝖡,𝑖 from Bob, Alice generates a new com-
mitment transaction and revocable delivery transaction with
(𝗌𝗄𝖠,0, 𝗉𝗄𝖠,0, 𝗉𝗄𝖡,𝑖) and (𝗌𝗄𝖠,0, 𝗉𝗄𝖡,𝑖), respectively, where
(𝗉𝗄𝖠,0, 𝗉𝗄𝖡,𝑖) is used to generate the 2-of-2 multi-signature ad-
dress.

4. Send the resulting commitment transaction and revocable deliv-
ery transaction to Bob along with 𝑠𝑘𝐴,𝑖−1 via an authenticated
channel.

5. Upon receiving one new commitment transaction, one new re-
vocable delivery transaction, as well as 𝑠𝑘𝖡,𝑖−1 from Bob, Al-
ice checks whether 𝑠𝑘𝐵,𝑖−2 = 𝐻(𝑠𝑘𝐵,𝑖−1) holds1 and whether
(𝗌𝗄𝖡,𝑖−1, 𝗉𝗄𝖡,𝑖−1) is a valid key pair, where 𝗌𝗄𝖡,𝑖−1 = 𝖪𝖣𝖥(𝑠𝑘𝐵,𝑖−1).
If one of them is invalid, Alice should ask Bob to resend the
corresponding value. Otherwise, she stores the received transac-
tions to replace the old commitment transaction and revocable
delivery transaction.

6. Store 𝗌𝗄𝖠,𝑖, 𝑠𝑘𝐵,𝑖−1, and 𝗉𝗄𝖡,𝑖 locally, and remove 𝗌𝗄𝖠,𝑖−1, 𝑠𝑘𝐵,𝑖−2,
and 𝗉𝗄𝖡,𝑖−1 from her storage. Besides the commitment transac-
tion and revocable delivery transaction, we have five values
(𝑠𝑘𝐴, 𝗌𝗄𝖠,0, 𝑠𝑘𝐴,𝑖, 𝑠𝑘𝐵,𝑖−1, 𝗉𝗄𝖡,𝑖) in Alice’s storage.

It is easy to see that steps 2 and 3 above are the same as those in the
original 𝖫𝖭.

Close the payment channel. The following steps are for closing the
ayment channel in our proposal.

• Like that in the original 𝖫𝖭, if Alice or Bob in our proposal wants
to close the payment channel, she/he needs to submit the newest
commitment transaction and the successive revocable delivery
transaction. However, different from the original 𝖫𝖭, the one
needs to compute the private key 𝑠𝑘𝐼,𝑖 from 𝗌𝗄𝐼,𝑖 = 𝖪𝖣𝖥(𝑠𝑘𝐼,𝑖),
where 𝐼 ∈ {𝐴,𝐵} and 𝑖 is the subscript of the current commitment
transaction.

• When one of Alice and Bob is a malicious player who submits a
previous commitment transaction to the Bitcoin blockchain, the
counterparty needs to generate the corresponding breach remedy
transaction like that in the original 𝖫𝖭. However, different from

1 This check is only for the case 𝑖 > 2.
4

the original 𝖫𝖭, the counterparty needs to compute the malicious
player’s private key 𝗌𝗄𝐼,𝑗 from 𝗌𝗄𝐼,𝑗 = 𝖪𝖣𝖥(𝑠𝑘𝐼,𝑗), where 𝐼 ∈
{𝐴,𝐵}, 𝑠𝑘𝐼,𝑗 is computed from 𝑠𝑘𝐼,𝑖−1 with 𝑖 − 1 − 𝑗 hash com-
putations (𝑠𝑘𝐼,𝑘−1 = 𝐻(𝑠𝑘𝐼,𝑘)), 𝑠𝑘𝐼,𝑖−1 is the private key received
from the malicious player, and 𝑖 and 𝑗 are the subscripts of the
current and submitted commitment transactions, respectively.

.1.2. Analysis of our hash-based scheme
Compared to the original 𝖫𝖭, we make changes in the private keys’

anagement mechanism for transactions. In the original 𝖫𝖭, the private
eys are generated independently while generated with a hash chain
ethod in our scheme. Nothing changes in the transactions submitted

o the Bitcoin blockchain. Hence, our hash-based scheme inherits the
ollowing properties of the original 𝖫𝖭 naturally: instant payments
nd Bitcoin-compatibility. The following will show that the hash chain
ethod does not affect the private keys’ security.

• Confidentiality of the private key: Alice or Bob cannot deduce the
counterparty’s future private key. According to the description,
the private key 𝗌𝗄𝐼,𝑖 is computed from 𝗌𝗄𝐼,𝑖 = 𝖪𝖣𝖥(𝑠𝑘𝐼,𝑖) and
𝑠𝑘𝐼,𝑖−1 = 𝐻(𝑠𝑘𝐼,𝑖). On the other hand, Alice or Bob only has the
knowledge of 𝑠𝑘𝐼,𝑗 ’s (1 ≤ 𝑗 < 𝑖) of the counterparty. With the
one-wayness of the hash function, no one can obtain 𝑠𝑘𝐼,𝑖 from
𝑠𝑘𝐼,𝑗 (1 ≤ 𝑗 < 𝑖). Hence, we have this property.

• Unforgeability of the private key: Alice or Bob cannot send an
invalid private key to the counterparty as her/his private key
corresponding to the revoking commitment transaction. Recall
the checking process. The one should check whether 𝑠𝑘𝐼,𝑖−2 =
𝐻(𝑠𝑘𝐼,𝑖−1) holds and whether (𝗌𝗄𝐼,𝑖−1, 𝗉𝗄𝐼,𝑖−1) is a valid key pair
of the signature scheme, where 𝗌𝗄𝐼,𝑖−1 = 𝖪𝖣𝖥(𝑠𝑘𝐼,𝑖−1). The former
condition guarantees that the current 𝑠𝑘𝐵,𝑖−1 can always gener-
ate the counterparty’s previous private keys, and the latter one
ensures that the current 𝑠𝑘𝐼,𝑖−1 can always yield the valid 𝗌𝗄𝐼,𝑖−1.
Hence, we obtain this property.

4.2. Trapdoor one-way function based scheme

4.2.1. Description of our trapdoor one-way function based scheme
In our trapdoor one-way function based scheme, all the entities

know a key derivation function 𝖪𝖣𝖥 that generates the private keys
of the underlying signature scheme used in the blockchain. The whole
trapdoor one-way function based scheme proceeds as follows.

Open the payment channel. Alice and Bob do the following steps sym-
metrically. We take Alice as an example for simplicity as in the hash-
based scheme.

1. Choose a trapdoor one-way function 𝑓𝖠 with a random trapdoor
𝗍𝖽𝖠. After that, send 𝑓𝖠 to Bob via an authenticated channel
while keeping 𝗍𝖽𝖠 secret. We assume that the domain and range
of 𝑓𝖠 are the same for simplicity.

2. Choose two random elements 𝗌𝗄𝖠,0 and 𝑠𝑘𝐴,1 from the range of
private key of the underlying signature scheme and the domain
of 𝑓𝖠, respectively. Furthermore, compute 𝗌𝗄𝖠,1 = 𝖪𝖣𝖥(𝑠𝑘𝐴,1).

3. Compute the public keys 𝗉𝗄𝖠,0 and 𝗉𝗄𝖠,1 corresponding to 𝗌𝗄𝖠,0
and 𝗌𝗄𝖠,1, respectively. Furthermore, send (𝗉𝗄𝖠,0, 𝗉𝗄𝖠,1) to Bob via
an authenticated channel.

4. After receiving 𝗉𝗄𝖡,0 from Bob, Alice generates her part of the
funding transaction with her input and the 2-of-2 multi-signature
address corresponding to the two public keys 𝗉𝗄𝖠,0 and 𝗉𝗄𝖡,0.

5. After receiving 𝗉𝗄𝖡,1 from Bob, Alice generates one commit-
ment transaction and one revocable delivery transaction with
(𝗌𝗄𝖠,0, 𝗉𝗄𝖠,0, 𝗉𝗄𝖡,1) and (𝗌𝗄𝖠,0, 𝗉𝗄𝖡,1), respectively, where
(𝗉𝗄𝖠,0, 𝗉𝗄𝖡,1) is used to generate the 2-of-2 multi-signature ad-
dress.

Computer Networks 197 (2021) 108346G. Wei et al.

B
c
b
a

U
s
s
u
u

4

t
f
s
p
t
s

5

e
c

f
k
i
a
f
d
u
I

5

t

Fig. 3. The relationship among the private keys in our second scheme.

6. Send the resulting funding transaction, commitment transaction,
and revocable delivery transaction to Bob via an authenticated
channel.

7. Store (𝗌𝗄𝖠,0, 𝑠𝑘𝐴,1, 𝗉𝗄𝖡,1, 𝑓𝖡, 𝗍𝖽𝖠) locally, where 𝑓𝖡 is Bob’s trap-
door one-way function. Alice also needs to store the received
commitment transaction and revocable delivery transaction from
Bob.

y combining Alice and Bob’s parts of the funding transaction, we
an have the complete funding transaction submitted to the Bitcoin
lockchain. As our hash-based scheme, steps 3–6 above are the same
s those in the original 𝖫𝖭.

pdate the channel state. As the hash-based scheme, when the balance
tate of the funding transaction changes, Alice and Bob do the following
teps symmetrically. We also take Alice as an example for simplicity and
se the subscript of the current commitment as the time of the balance
pdate.

1. Compute 𝑠𝑘𝐴,𝑖 and 𝗌𝗄𝖠,𝑖 by 𝑠𝑘𝐴,𝑖 = 𝑓−1
𝖠

(𝗍𝖽𝖠, 𝑠𝑘𝐴,𝑖−1) and 𝗌𝗄𝖠,𝑖 =
𝖪𝖣𝖥(𝑠𝑘𝐴,𝑖), respectively. Clearly, we have the relationship among
the private keys as shown in Fig. 3.

2. Compute the public key 𝗉𝗄𝖠,𝑖 of 𝗌𝗄𝖠,𝑖. Furthermore, send 𝗉𝗄𝖠,𝑖 to
Bob via an authenticated channel.

3. After receiving 𝗉𝗄𝖡,𝑖 from Bob, Alice generates a new com-
mitment transaction and revocable delivery transaction with
(𝗌𝗄𝖠,0, 𝗉𝗄𝖠,0, 𝗉𝗄𝖡,𝑖) and (𝗌𝗄𝖠,0, 𝗉𝗄𝖡,𝑖), respectively, where
(𝗉𝗄𝖠,0, 𝗉𝗄𝖡,𝑖) is used to generate the 2-of-2 multi-signature ad-
dress.

4. Send the resulting commitment transaction and revocable deliv-
ery transaction to Bob along with 𝑠𝑘𝐴,𝑖−1 via an authenticated
channel.

5. Upon receiving a new commitment transaction and revocable
delivery transaction, as well as 𝑠𝑘𝖡,𝑖−1 from Bob, Alice checks
whether 𝑠𝑘𝐵,𝑖−2 = 𝑓𝖡(𝑠𝑘𝐵,𝑖−1) holds2 and whether (𝗌𝗄𝖡,𝑖−1, 𝗉𝗄𝖡,𝑖−1)
is a valid key pair, where 𝗌𝗄𝖡,𝑖−1 = 𝖪𝖣𝖥(𝑠𝑘𝐵,𝑖−1). If one of them is
invalid, Alice should ask Bob to resend the corresponding value.
Otherwise, she stores the received transactions to replace the old
commitment transaction and revocable delivery transaction.

6. Store 𝑠𝑘𝐴,𝑖, 𝑠𝑘𝐵,𝑖−1, and 𝗉𝗄𝖡,𝑖 locally, and remove 𝗌𝗄𝖠,𝑖−1, 𝑠𝑘𝐵,𝑖−2,
and 𝗉𝗄𝖡,𝑖−1 from her storage. Besides the commitment transac-
tion and revocable delivery transaction, we have six elements
(𝗌𝗄𝖠,0, 𝑠𝑘𝐴,𝑖, 𝑠𝑘𝐵,𝑖−1, 𝗉𝗄𝖡,𝑖, 𝑓𝖡, 𝗍𝖽𝖠) in Alice’s storage.

Like the hash-based scheme, steps 2 and 3 above are the same as those
in the original 𝖫𝖭.

Close the payment channel. The following steps are for closing the
payment channel in our trapdoor one-way function based scheme.

• If Alice or Bob in our proposal wants to close the payment chan-
nel, she/he needs to submit the newest commitment transaction
and the successive revocable delivery transaction as that in our
hash-based scheme.

2 This check is only for the case 𝑖 > 2.
5

• If Alice or Bob is a malicious player who submits a previous
commitment transaction to the blockchain, the counterparty does
almost the same steps as that in our hash-based scheme, except for
the method to compute 𝑠𝑘𝐼,𝑗 of the malicious player. In particular,
in our trapdoor one-way function based scheme, 𝑠𝑘𝐼,𝑗 is computed
from 𝑠𝑘𝐼,𝑖−1 with 𝑖 − 1 − 𝑗 times trapdoor one-way function
computation, where 𝐼 ∈ {𝐴,𝐵} and 𝑖 and 𝑗 are the subscripts of
the current and submitted commitment transactions, respectively.

.2.2. Analysis of our trapdoor one-way function based scheme
As we can see from the description, our second scheme is almost

he same as our first scheme. The only difference is how to generate
uture keys and derive old keys from the current key. Hence, the
econd scheme still inherits instant payments and Bitcoin-compatibility
roperties from the original 𝖫𝖭. In the following, we will show that
he trapdoor one-way function method does not affect the private keys’
ecurity, which is quite similar to that of the hash-based scheme.

• Confidentiality of the private key: Alice or Bob cannot reveal the
counterparty’s future private key. According to the description,
the private key 𝗌𝗄𝐼,𝑖 is computed from 𝗌𝗄𝐼,𝑖 = 𝖪𝖣𝖥(𝑠𝑘𝐼,𝑖) and
𝑠𝑘𝐼,𝑖−1 = 𝑓𝖠(𝑠𝑘𝐼,𝑖). On the other hand, Alice or Bob only has the
knowledge of 𝑠𝑘𝐼,𝑗 ’s (1 ≤ 𝑗 < 𝑖) of the counterparty. With the
one-wayness of the trapdoor one-way hash function, no one can
obtain 𝑠𝑘𝐼,𝑖 from 𝑠𝑘𝐼,𝑗 (1 ≤ 𝑗 < 𝑖) without knowing the underlying
trapdoor 𝗍𝖽𝐼 . Hence, we have this property.

• Unforgeability of the private key: Alice or Bob cannot send an
invalid private key to the counterparty as the private key cor-
responding to the commitment transaction. Recall the checking
process. The one should check whether 𝑠𝑘𝐼,𝑖−2 = 𝑓𝐼 (𝑠𝑘𝐼,𝑖−1) holds
and whether (𝗌𝗄𝐼,𝑖−1, 𝗉𝗄𝐼,𝑖−1) is a valid key pair of the signature
scheme, where 𝗌𝗄𝐼,𝑖−1 = 𝖪𝖣𝖥(𝑠𝑘𝐼,𝑖−1) and 𝐼 ∈ {𝐴,𝐵}. The
former condition guarantees that the current 𝑠𝑘𝐵,𝑖−1 can always
generate the counterparty’s previous private keys, and the latter
one ensures that the current 𝑠𝑘𝐼,𝑖−1 can always yield the valid
𝗌𝗄𝐼,𝑖−1. Hence, we obtain this property.

. Performance evaluation

This section will evaluate the performance of our proposed space-
fficient key management for the 𝖫𝖭 in terms of storage overhead and
omputational cost.

In specific experiments, we use the SHA256 algorithm as the hash
unction used in the hash-based scheme, and (mod 𝑞) as the underlying
ey derivation function, where 𝑞 is the prime order of the group used
n ECDSA. In the trapdoor one-way function based scheme, we use RSA
lgorithm with a 2048-bit modulus as the candidate trapdoor one-way
unction and SHA256 algorithm plus (mod 𝑞) as the underlying key
erivation function. Furthermore, we implement our proposed schemes
sing Java. Then, we perform experiments on Ubuntu 20.04 with
ntel(R) Xeon(R) Gold 6140 CPU @ 2.30 GHz and 8 GB RAM.

.1. Storage overhead

In the original 𝖫𝖭, the involving party (Alice or Bob) needs to store
wo private keys (𝗌𝗄𝐼,0, 𝗌𝗄𝐼,𝑖) for signing commitment transactions and

revocable delivery transactions, respectively. To generate the breach
remedy transactions, he/she still needs to store 𝑛̄ private keys 𝗌𝗄𝐼,𝑗 ’s of
his/her counterparty, where 𝑛̄ is the number of commitment transac-
tions that happened in the payment channel. Furthermore, the party
needs to store one public key 𝗉𝗄𝐼,𝑖 of his/her counterparty to check the
validity of the received private key from the counterparty. Finally, the
party needs to store the newest commitment transaction and revocable
delivery transaction from the counterparty. In summary, the party
needs (2+𝑛̄)|𝗌𝗄|+|𝗉𝗄|+|𝗍𝗑𝖼𝗈𝗆|+|𝗍𝗑𝗋𝖽| storage overhead, where | ⋅ | denotes
the bit length of 𝑥.

Computer Networks 197 (2021) 108346G. Wei et al.

c
n

t
n

s
t

𝑓
L

o
c
i

p
c

s
t

Fig. 4. The comparison among the original 𝖫𝖭 and our proposed schemes in terms of
storage cost.

According to the description of our hash-based scheme, the involv-
ing party needs to store one private key 𝗌𝗄𝐼,0 to sign commitment
transactions, and one secret 𝑠𝑘𝐼,𝑖 to generate the private key of the
current revocable delivery transactions.3 Furthermore, the party stores
one secret 𝑠𝑘𝐼 for generating all other secrets 𝑠𝑘𝐼,𝑖’s. Unlike the orig-
inal 𝖫𝖭, the party only needs to store one private key 𝑠𝑘𝐼,𝑖−1 of the
ounterparty to generate breach remedy transactions. Finally, the party
eeds to store one public key 𝗉𝗄𝐼,𝑖 of his/her counterparty, the newest

commitment transaction, and revocable delivery transaction from the
counterparty, like that in the original 𝖫𝖭. In summary, the party needs
|𝗌𝗄| + 3|𝑠𝑘| + |𝗉𝗄| + |𝗍𝗑𝖼𝗈𝗆| + |𝗍𝗑𝗋𝖽| storage overhead. It is easy to see
hat our hash-based scheme’s storage cost has nothing to do with the
umber of transactions in the payment channel.

Similar to our hash-based scheme, the involving party in our second
cheme needs to store one private key 𝗌𝗄𝐼,0 for signing commitment
ransactions, one secret 𝑠𝑘𝐴,𝑖 for generating the private key of the

current revocable transaction, and the trapdoor 𝗍𝖽𝐼 . The party further
stores store one private key 𝑠𝑘𝐼,𝑖−1 and the trapdoor one-way function
𝐼 of the counterparty to generate the breach remedy transactions.
ike that in the original 𝖫𝖭, the party needs to store one public key

𝗉𝗄𝐼,𝑖 of his/her counterparty and the newest commitment transaction
and revocable delivery transaction from the counterparty. In summary,
the party needs |𝗌𝗄| + |𝑠𝑘| + |𝗍𝖽| + |𝑓 | + |𝗉𝗄| + |𝗍𝗑𝖼𝗈𝗆| + |𝗍𝗑𝗋𝖽| storage
verhead. Like our hash-based scheme, our second scheme’s storage
ost has nothing to do with the number of transactions that happened
n the payment channel.

In Fig. 4, we give a comparison among the original 𝖫𝖭 and our
roposed schemes. Note that we ignore the storage cost due to the same
omponents in the three schemes, including 𝗌𝗄𝐼,0, 𝗉𝗄𝐼,𝑖, 𝗍𝗑𝖼𝗈𝗆, and 𝗍𝗑𝗋𝖽.

From this figure, we can easily see that the complexity of storage in
our proposed schemes is (1). The number of updates happening in
a channel varies with its type and its owner’s activities. According to
the statistics provided by 1ML,4 the updated channels in 24 h and the
total number of channels are respectively 45,181 and 51,599, and the
average channel age is 325.1 days, which indicates a non-negligible
average number of transactions happening in an active channel. Hence,
the storage cost of our proposed schemes outperforms that of the
original 𝖫𝖭.

3 This secret 𝑠𝑘𝐼,𝑖 could be removed since it can be computed from the
ecret 𝑠𝑘𝐼 that can generate all other secrets. However, we remain this value
o save computational cost.

4 https://1ml.com/statistics (Accessed: Jun 25, 2021).
6

Fig. 5. Computational cost for opening a channel in our schemes.

Fig. 6. Computational cost for closing a channel in our schemes.

5.2. Computational cost

In our proposed schemes, many operations also happen in the origi-
nal 𝖫𝖭, such as the commitment transaction generation during opening
the payment channel process. To clearly show the computational cost
due to the key management used in our proposed schemes, we ignore
the cost of these common operations in this section. Hence, we have
the following performance analysis.

• Hash-based scheme: The party (Alice or Bob) executes 𝑛 hash
computations, one 𝖪𝖣𝖥 computation to open the payment chan-
nel, where 𝑛 is the maximum number of transactions that can
happen in the channel. To update the payment channel, the party
executes 𝑛− 𝑖+1 hash computations, and two 𝖪𝖣𝖥 computations,
where 𝑖 is the subscript of the current commitment transaction.
Finally, the party needs to execute one 𝖪𝖣𝖥 computation and
𝑖−1−𝑗 hash computations at most to close the channel, where 𝑗 is
the subscript of the previous commitment transaction submitted
to the Bitcoin blockchain.

• Trapdoor one-way function based scheme: The party executes one
𝖪𝖣𝖥 computation to open the payment channel, one computation
of the inversion of the underlying trapdoor one-way function 𝑓𝐼 ,
two 𝖪𝖣𝖥 computations, and one computation of 𝑓𝐼 to update the
channel state, and 𝑖 − 1 − 𝑗 computations of the inversion of 𝑓𝐼
and one 𝖪𝖣𝖥 computation at most to close the channel.

We give the experimental results for opening/closing a payment
channel in Figs. 5–6. Note that we implement 𝑓𝐼 with RSA algorithm,
where one can reduce 𝑖 − 1 − 𝑗 computations of the inversion of 𝑓𝐼 to
one computation by

𝑑𝑖−1−𝑗 (mod 𝜙(𝑁))
𝑠𝑘𝐼,𝑗 = (𝑠𝑘𝐼,𝑖−1) (mod 𝑁),

https://1ml.com/statistics

Computer Networks 197 (2021) 108346G. Wei et al.

t

𝑁
F
f
n
f
t
v
p
c
b
m
t
c

5

t
t
f
t
n
h
n
i
b

6

n
l
o
t
r
c
r
s
p
t
r
o

6

c
l
t
t
t
i
t
a
c
m
D
c
c
a
v
c
t
e
f
h
i
q
e
a
p
t
t
b
c
w

6

c
o
s
h
a
P
d
f
a
p
t
l
s
t
i
c

6

a
w
c
B
c
B
c
t
f

Fig. 7. Computational cost for each update to the channel state vs the number of 𝗍𝗑𝖼𝗈𝗆
hat happened in the channel.

is the underlying RSA modulus, and 𝑑 is the private key of RSA.
rom Fig. 5, we can see that our hash-based function is more efficient
or opening a channel. In Fig. 6, we do not give the results of the
ormal close case, since it only requires an additional key derivation
unction computation that can be ignored. From this figure, we can see
hat our hash-based function is still more efficient if the interval is not
ery huge. As we know, opening/closing a payment channel only hap-
ens once for one channel, we are more concerned with the updating
ase, which is given in Fig. 7. From this figure, we can see when 𝑛
ecomes very huge, our trapdoor one-way function based scheme is
ore efficient than our hash-based scheme in most cases, where 𝑛 is

he maximum number of commitment transactions happening in the
hannel.

.3. Discussion

From Fig. 4, we can see that the hash-based scheme is better than
he trapdoor one-way function based scheme in terms of storage cost,
hough both of them require (1) storage complexity. Furthermore,
rom Figs. 5–7, we can see that the hash-based scheme is more efficient
han the trapdoor one-way function based scheme if the maximum
umber of transactions in the channel is not very large. In this case, the
ash-based scheme is the right choice. However, when the maximum
umber of transactions becomes very huge or unlimited as the 𝖱𝖲𝖬𝖢

s expected, the trapdoor one-way function based scheme becomes the
etter choice.

. Related work

Lightning network is currently the most promising payment chan-
el scheme and has been implemented using different programming
anguages [8–10]. However, existing protocols are still in early devel-
pment. There is a rich body of literature that have been proposed
o present improvements, such as privacy enhancement [23,28,29],
outing algorithms optimization [30,31], channel rebalancing [32] and
hannel factories [33]. To the best of our knowledge, although some
esearch results can be used to alleviate the space efficiency issue we
tudied in this paper, none of them is compatible with Bitcoin. In this
aper, we utilized the hash function and trapdoor one-way function
o solve the problem. Hence, in this section, we will review the works
elated to the space efficiency issue, hash-based solutions, and trapdoor
ne-way function based solutions.
7

.1. Channel techniques solving space efficiency issue

Decker and Wattenhofer [34] proposed a bidirectional payment
hannels scheme by using the time lock as a parallel work to the
ightning network. They also introduced the concept of invalidation
ree to reset the channel state, and its storage cost is (1). However,
he channel’s lifetime is limited due to the depth of the tree and
he absolute lock time associated with each node. Miller et al. [17]
ntroduced the concept of the state channel named Sprites that ex-
ended the payment channel to support the execution of arbitrary
pplications. Dziembowski et al. [21] proposed another kind of state
hannel, virtual channel Perun, to allow both parties to conduct pay-
ents without interacting with intermediaries on the path. Later on,
ziembowski et al. [18] presented the general construction of state
hannels through the virtual channel. In the above proposals, state
hannels are based on the Turing complete scripting language and
chieve the state replacement through a monotonically increased state
ersion. Thus, only (1) storage cost is required. However, the Turing
omplete scripting language rules Bitcoin out. Combining the UTXO
echnique with the replacement technique in the state channel, Decker
t al. [19] proposed Eltoo, introducing enforceable state numbers and
loating transactions to achieve state replacement so that the channel
as no expiration time and storage costs is (1). However, this proposal
s not Bitcoin-compatible because it introduced a new consensus rule re-
uiring Bitcoin to support Sprites’ state replacement technique. Pedrosa
t al. [20] proposed lightning factories following the Eltoo channels
pproach. One can aggregate the last breach remedy transaction into
revious old states, so the storage cost is (1), but this feature requires
he introduction of the same consensus rule as Eltoo. In summary,
he current improvements for the space efficiency issue are achieved
y introducing new state replacement techniques or updating new
onsensus rules for the Bitcoin script. Hence, they are incompatible
ith Bitcoin.

.2. Hash chain

In our first scheme, we make use of the hash function as a hash
hain. This technique was proposed by Lamport [35] and applied to
ne-time password authentication in an insecure environment. Sub-
equently, based on the same construction, Merkle [36] utilized the
ash chain to construct a Merkle authentication tree and proposed
message authentication scheme. Rivest and Shamir [37] proposed

ayWord, a micropayment scheme that utilizes a hash chain to coor-
inate the finance between two parties. Suzuki et al. [38] proposed a
irst-price sealed-bid auction scheme that provides privacy protection
nd accuracy assurance through the hash chain. Rivest et al. [39]
roposed the time-release cryptography by utilizing a hash chain for
ime control. Subsequently, Joye and Yen [40] proposed internal re-
ease cryptography by utilizing two hash chains for key generation,
upporting key escrow agencies to release users’ keys within a specific
ime interval effectively. Even though the hash chain is very normal
n many applications, it has never been used in the lightning network
ontext.

.3. Trapdoor one-way function chain

The key management in our second scheme can be considered
s a trapdoor one-way function chain. Actually, the trapdoor one-
ay function chain and hash chain are inextricably linked. The hash

hain provides high efficiency but has a limitation of finite length.
y adopting the trapdoor one-way function, a chain of infinite length
an be constructed, which can improve the hash chain’s application.
icakci and Baykal [41] proposed the first trapdoor one-way function
hain, and they realized the improvement of Lamport’s scheme [35] by
reating the values on the chain as one-time keys. Trapdoor one-way
unction chain is also exploited in multicast communications. The hash

Computer Networks 197 (2021) 108346G. Wei et al.
chain-based scheme proposed by Pietro et al. [42] does not support
backward secrecy, has a bounded chain length, and requires the group
manager to track each chain’s update. To address these shortcomings,
Pietro et al. [43] proposed another scheme based on trapdoor one-
way function, which introduced the chameleon chain that the group
manager uses the values on the chain rather than the hash chain for
key nodes renewal.

7. Conclusion

The lightning network is considered as the most promising solution
for the scalability issue of Bitcoin. However, the 𝖫𝖭 itself suffers from
the space efficiency issue due to the state revocation mechanism used
in the 𝖫𝖭. To solve this problem, we proposed two schemes based on
the hash function and trapdoor one-way function, respectively. Our
security analysis shows that our schemes will not affect good properties
of the original 𝖫𝖭, and our experimental result conducts that our
schemes solve the space efficiency issue efficiently. Since hash function
computation is more efficient than (the inversion of) trapdoor one-way
function computation, the hash-based scheme would be a better choice
if the channel’s maximum number of transactions is not very huge.
Otherwise, the trapdoor one-way function based scheme is a wiser
choice.

CRediT authorship contribution statement

Guiyi Wei: Writing – original draft. Xiaohang Mao: Software,
Investigation – related work. Rongxing Lu: Security analysis, Writing –
reviewing. Jun Shao: Propose the main idea. Yunguo Guan: Software,
Writing – editing. Genhua Lu: Picture, Software.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008, http://bitcoin.
org/bitcoin.pdf.

[2] Tokeninsight, 2019 cryptocurrency spot exchange industry annual report, 2020,
https://www.tokeninsight.com/report/1030?lang=en.

[3] coin.dance, Global bitcoin legality, 2020, https://coin.dance/poli.
[4] M. Trillo, Stress test prepares visanet for the most wonderful time of

the year, 2013, https://www.visa.com/blogarchives/us/2013/10/10/stress-test-
prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html.

[5] J. Spilman, Anti dos for tx replacement, 2013.
[6] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, A. Gervais, SoK: Off the

chain transactions, IACR Cryptol. ePrint Arch. (2019) 360.
[7] J. Poon, T. Dryja, The bitcoin lightning network: Scalable off-chain instant

payments, 2016.
[8] C-lightning Daemon, 2018, https://github.com/ElementsProject/lightning/tree/

master/lightningd. (Acceses in May 2018).
[9] A scala implementation of the lightning network, https://github.com/ACINQ/

eclair.
[10] Lightning network daemon, https://github.com/lightningnetwork/lnd.
[11] https://tippin.me/.
[12] https://www.walletofsatoshi.com/.
[13] D. Hamilton, The top 5 lightning network payment processors, 2018, https:

//www.bitcoinlightning.com/the-top-5-lightning-network-payment-processors/.
[14] https://www.bitrefill.com/.
[15] https://satoshis.games/.
[16] https://lnsms.world/.
[17] A. Miller, I. Bentov, R. Kumaresan, P. McCorry, Sprites: Payment channels that

go faster than lightning, 2017, CoRR abs/1702.05812.
[18] S. Dziembowski, S. Faust, K. Hostáková, General state channel networks, in: ACM

SIGSAC, CCS 2018, pp. 949–966.
8

[19] C. Decker, R. Russell, O. Osuntokun, Eltoo: A simple layer2 protocol for bitcoin,
2018, https://blockstream.com/eltoo.pdf.

[20] A.R. Pedrosa, M. Potop-Butucaru, S. Tucci Piergiovanni, Scalable lightning
factories for Bitcoin, in: ACM/SIGAPP, SAC 2019, 2019, pp. 302–309.

[21] S. Dziembowski, L. Eckey, S. Faust, D. Malinowski, Perun: Virtual payment hubs
over cryptocurrencies, in: IEEE, SP 2019, pp. 106–123.

[22] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, S. Ravi, Concurrency
and privacy with payment-channel networks, in: ACM SIGSAC CCS 2017, pp.
455–471.

[23] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, M. Maffei, Anony-
mous multi-hop locks for blockchain scalability and interoperability, in: NDSS
2019.

[24] N.I. of Standards, Technology, Secure Hash Standard, Federal Information
Processing Standards Publication 180-2, 2002, URL http://www.itl.nist.gov/
fipspubs.

[25] W. Diffie, M.E. Hellman, New directions in cryptography, IEEE Trans. Inf. Theory
22 (6) (1976) 644–654.

[26] J.L. Massey, An introduction to contemporary cryptology, Proc. IEEE 76 (5)
(1988) 533–549.

[27] R.L. Rivest, A. Shamir, L.M. Adleman, A method for obtaining digital signatures
and public-key cryptosystems, Commun. ACM 21 (2) (1978) 120–126, http://
dx.doi.org/10.1145/359340.359342, URL http://doi.acm.org/10.1145/359340.
359342.

[28] M. Green, I. Miers, Bolt: Anonymous payment channels for decentralized
currencies, in: ACM SIGSAC, CCS 2017, pp. 473–489.

[29] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, S. Goldberg, TumbleBit: An
untrusted bitcoin-compatible anonymous payment hub, in: NDSS 2017.

[30] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, SilentWhispers: Enforcing
security and privacy in decentralized credit networks, in: NDSS 2017.

[31] S. Roos, P. Moreno-Sanchez, A. Kate, I. Goldberg, Settling payments fast and
private: Efficient decentralized routing for path-based transactions, in: NDSS
2018.

[32] R. Khalil, A. Gervais, Revive: Rebalancing off-blockchain payment networks, in:
ACM SIGSAC, CCS 2017, pp. 439–453.

[33] C. Burchert, C. Decker, R. Wattenhofer, Scalable funding of bitcoin micropayment
channel networks - regular submission, in: SSS 2017, Vol. 10616, 2017, pp.
361–377.

[34] C. Decker, R. Wattenhofer, A fast and scalable payment network with bitcoin
duplex micropayment channels, in: SSS 2015, Vol. 9212, pp. 3–18.

[35] L. Lamport, Password authentication with insecure communication, Commun.
ACM 24 (11) (1981) 770–772.

[36] R.C. Merkle, A digital signature based on a conventional encryption function, in:
CRYPTO, Vol. 293, 1987, pp. 369–378.

[37] R.L. Rivest, A. Shamir, Payword and micromint: Two simple micropayment
schemes, in: Security Protocols, International Workshop, Vol. 1189, 1996, pp.
69–87.

[38] K. Suzuki, K. Kobayashi, H. Morita, Efficient sealed-bid auction using hash chain,
in: ICISC 2000, Vol. 2015, pp. 183–191.

[39] R.L. Rivest, A. Shamir, D.A. Wagner, Time-Lock Puzzles and Timed-Release
Crypto, Tech. rep., Massachusetts Institute of Technology, USA, 1996, URL
https://people.csail.mit.edu/rivest/pubs/RSW96.pdf.

[40] M. Joye, S. Yen, One-way cross-trees and their applications, in: PKC, Vol. 2274,
2002, pp. 346–356.

[41] K. Bicakci, N. Baykal, Infinite length hash chains and their applications, in:
WETICE 2002, pp. 57–61.

[42] R.D. Pietro, A. Durante, L.V. Mancini, A reliable key authentication schema for
secure multicast communications, in: SRDS 2003, pp. 231–240.

[43] R.D. Pietro, L.V. Mancini, A. Durante, V. Patil, Addressing the shortcomings of
one-way chains, in: ACM, ASIACCS 2006, pp. 289–296.

Guiyi Wei is a professor of the School of Information and
Electronic Engineering at Zhejiang Gongshang University.
He obtained his Ph.D. in Dec 2006 from Zhejiang University,
where he was advised by Cheung Kong chair professor
Yao Zheng. His research interests include wireless networks,
mobile computing, cloud computing, social networks and
network security.

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://www.tokeninsight.com/report/1030?lang=en
https://coin.dance/poli
https://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb5
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb6
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb6
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb6
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb7
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb7
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb7
https://github.com/ElementsProject/lightning/tree/master/lightningd
https://github.com/ElementsProject/lightning/tree/master/lightningd
https://github.com/ElementsProject/lightning/tree/master/lightningd
https://github.com/ACINQ/eclair
https://github.com/ACINQ/eclair
https://github.com/ACINQ/eclair
https://github.com/lightningnetwork/lnd
https://tippin.me/
https://www.walletofsatoshi.com/
https://www.bitcoinlightning.com/the-top-5-lightning-network-payment-processors/
https://www.bitcoinlightning.com/the-top-5-lightning-network-payment-processors/
https://www.bitcoinlightning.com/the-top-5-lightning-network-payment-processors/
https://www.bitrefill.com/
https://satoshis.games/
https://lnsms.world/
http://arxiv.org/abs/1702.05812
https://blockstream.com/eltoo.pdf
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb20
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb20
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb20
http://www.itl.nist.gov/fipspubs
http://www.itl.nist.gov/fipspubs
http://www.itl.nist.gov/fipspubs
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb25
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb25
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb25
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb26
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb26
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb26
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb33
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb33
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb33
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb33
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb33
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb35
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb35
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb35
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb36
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb36
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb36
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb37
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb37
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb37
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb37
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb37
https://people.csail.mit.edu/rivest/pubs/RSW96.pdf
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb40
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb40
http://refhub.elsevier.com/S1389-1286(21)00340-6/sb40

Computer Networks 197 (2021) 108346G. Wei et al.
Xiaohang Mao obtained his master degree from the School
of Computer and Information Engineering at Zhejiang Gong-
shang University in Jan. 2021. His research interests include
applied cryptography and blockchain.

Rongxing Lu is an associate professor at the Faculty
of Computer Science (FCS), University of New Brunswick
(UNB), Canada. Before that, he worked as an assistant pro-
fessor at the School of Electrical and Electronic Engineering,
Nanyang Technological University (NTU), Singapore from
April 2013 to August 2016. Rongxing Lu worked as a
Postdoctoral Fellow at the University of Waterloo from May
2012 to April 2013. He was awarded the most prestigious
‘‘Governorgeneral’s Gold Medal’’, when he received his
Ph.D. degree from the Department of Electrical & Computer
Engineering, University of Waterloo, Canada, in 2012; and
won the 8th IEEE Communications Society (ComSoc) Asia
Pacific (AP) Outstanding Young Researcher Award, in 2013.
Also, Dr. Lu received his first Ph.D. degree at Shanghai
Jiao Tong University, China, in 2006. Dr. Lu is an IEEE
Fellow. His research interests include applied cryptography,
privacy enhancing technologies, and IoT-Big Data security
and privacy. He has published extensively in his areas
of expertise (with H-index 72 from Google Scholar as of
November 2020), and was the recipient of 9 best (student)
paper awards from some reputable journals and conferences.
Currently, Dr. Lu serves as the Vice-Chair (Conferences)
of IEEE ComSoc CIS-TC (Communications and Information
Security Technical Committee). Dr. Lu is the Winner of
2016–17 Excellence in Teaching Award, FCS, UNB.
9

Jun Shao received the Ph.D. degree from the Department
of Computer Science and Engineering, Shanghai Jiao Tong
University, Shanghai, China, in 2008. He was a Post-
Doctoral Fellow with the School of Information Sciences and
Technology, Pennsylvania State University, Pennsylvania,
PA, USA, from 2008 to 2010. He is currently a Professor
with the School of Computer and Information Engineering,
Zhejiang Gongshang University, Hangzhou, China. His cur-
rent research interests include network security and applied
cryptography.

Yunguo Guan is a Ph.D. student of the Faculty of Computer
Science, University of New Brunswick, Canada. His research
interests include applied cryptography and game theory.

Genhua Lu is a master student of the School of Computer
and Information Engineering at Zhejiang Gongshang Uni-
versity. Her research interests include applied cryptography
and blockchain.

	Achieve space-efficient key management in lightning network
	Introduction
	System model and design goals
	System model—RSMC
	Security model
	Design goal

	Preliminaries
	Hash function
	Trapdoor one-way function

	Our space-efficient key management for the
	Hash-based scheme
	Description of our hash-based scheme
	Analysis of our hash-based scheme

	Trapdoor one-way function based scheme
	Description of our trapdoor one-way function based scheme
	Analysis of our trapdoor one-way function based scheme

	Performance evaluation
	Storage overhead
	Computational cost
	Discussion

	Related work
	Channel techniques solving space efficiency issue
	Hash chain
	Trapdoor one-way function chain

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

