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Abstract— Federated learning (FL), as a distributed machine
learning setting, has received considerable attention in recent
years. To alleviate privacy concerns, FL essentially promises that
multiple parties jointly train the model by exchanging gradients
rather than raw data. However, intrinsic privacy issue still exists
in FL, e.g., user’s training samples could be revealed by solely
inferring gradients. Moreover, the emerging poisoning attack
also poses a crucial security threat to FL. In particular, due
to the distributed nature of FL, malicious users may submit
crafted gradients during the training process to undermine the
integrity and availability of the model. Furthermore, there exists
a contradiction in simultaneously addressing two issues, that is,
privacy-preserving FL solutions are dedicated to ensuring gradi-
ents indistinguishability, whereas the defenses against poisoning
attacks tend to remove outliers based on their similarity. To solve
such a dilemma, in this paper, we aim to build a bridge between
the two issues. Specifically, we present a privacy-enhanced
FL (PEFL) framework that adopts homomorphic encryption as
the underlying technology and provides the server with a channel
to punish poisoners via the effective gradient data extraction of
the logarithmic function. To the best of our knowledge, the PEFL
is the first effort to efficiently detect the poisoning behaviors in
FL under ciphertext. Detailed theoretical analyses illustrate the
security and convergence properties of the scheme. Moreover, the
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experiments conducted on real-world datasets show that the
PEFL can effectively defend against label-flipping and backdoor
attacks, two representative poisoning attacks in FL.

Index Terms— Federated learning, poisoning attack, privacy
protection, cloud computing.

I. INTRODUCTION

FEDERATED learning (FL) has been emerging as a
promising machine learning setting [1], in which multiple

parties train a copy of the model locally and then submit
the model updates (i.e. gradients) to the parameter server
for aggregation, so as to construct an improved version.
Benefitting from its ability to train the model without storing
the training data in the cloud, FL has become one of the
fundamental techniques in many security-sensitive tasks such
as autonomous driving [2] and medical image analyses [3].

Despite its potential, security and privacy concerns in FL
have also aroused widespread attention. One of the prominent
concerns is privacy leakage from gradients. The semi-honest
server can still recover some sensitive information (e.g. avatar,
mood, and medical information) of the target users through
the received gradients, as indicated in previous works [4], [5].
Another crucial security threat faced by FL is poisoning
attacks. Because the server does not have access to the users’
dataset and federated training process, malicious users may
submit customized gradients so as to induce classification
errors at the test phase. Notably, a poisoned update can
take control of the entire training process, thereby rendering
the final model invalid [6]–[8]. Such manipulation may also
indirectly infringe upon users’ data privacy. For example,
by uploading inverted and amplified gradients, the adversary
can infer whether the samples were used to train the target
model [7]. Motivated by the aforementioned issues, a trust-
worthy FL must consider the following fundamental concerns:
(1) how to ensure that users’ data privacy is not leaked and
(2) how to guarantee the robustness of the model against
adversarial manipulations.

To protect users’ privacy, existing works mainly focused
on ensuring the confidentiality of gradients. The solutions are
generally based on the following three underlying technolo-
gies: Differential Privacy (DP) [9]–[12], Secure Multi-Party
Computation (SMC) [13]–[15] and Homomorphic Encryption
(HE) [16]–[18]. DP is a mathematically-formalized standard
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for the privacy-preserving analysis and use of data with some
advantages in terms of efficiency. DP-based FL, however,
is typically accomplished by incorporating random noise into
gradients, which inevitably drops the accuracy of model [19].
SMC realizes private and correct computation through mul-
tiple interactions between participants [13], [14]. However,
this mode not only incurs huge communication cost but
also requires participants to stay online, which induce new
performance bottlenecks for the actual distributed scenarios.
Compared with DP and SMC, HE allows to correctly aggre-
gate gradients while supporting users dropouts during the
training. Prior works [16]–[18] have also shown the superior
performance of HE to achieve secure FL.

Despite extensive investigations into the topic of privacy-
preserving FL, existing efforts have not concurrently consid-
ered a fundamental question, i.e. do all users submit benign
gradients honestly and reliably? In reality, it is possible
for a purpose-driven terrorist to misguide other autonomous
vehicles at the stop sign to move forward by submitting
maliciously crafted parameters, posing a serious threat to
traffic safety. As a result, for a secure and robust FL,
as mentioned above, it is crucial to resist poisoning attacks
launched by malicious adversaries while protecting users’
privacy. However, existing schemes for solving privacy issues
and poisoning attacks in FL focus around two opposite direc-
tions: the privacy-preserving FL solutions seek to ensure data
indistinguishability, whereas the defenses against poisoning
attacks tend to remove malicious gradients based on their
similarity to benign gradients. Currently, the similarity is
mainly measured based on one or more of the following
criteria: 1) The difference between gradients in Euclidean
space, e.g., Krum [6]. 2) Variations in gradient distributions
such as Detox [20]. 3) Difference in L p-norms between
gradients like GeoMed [21]. From this perspective, the above
defenses for extracting valuable statistical information rely
heavily on data distinguishability. The contradiction often
makes it a major challenge to identify the poisoning behaviors
in FL without compromising users’ privacy. The closest to
our method we noticed is [22], as it focuses on making the
current distance-based outlier removal mechanism compatible
with secure aggregation utilizing SMC. However, the scheme
inherits the performance and costly computation overhead of
the aggregation rule, as well as additional communication
overhead required by SMC.

To address the aforementioned challenge, in this paper,
we propose an effective and privacy-enhanced FL framework
(PEFL), which can efficiently detect poisoning behaviors dur-
ing the federated training process while protecting privacy.
Specifically, the contributions of our work are threefold,
as follows:
• We propose a new privacy-enhanced FL frame-

work (PEFL) with HE as the underlying technology. The
PEFL can ensure that malicious users cannot infer mem-
berships by uploading malicious gradients, in addition to
preventing the semi-honest servers from infringing users’
privacy.

• We also propose a novel adaptive federated aggregation
to mitigate poisoning attacks in FL, which assesses

Fig. 1. System model.

users’ reliability by taking coordinate-wise medians as
the benchmark and then adaptively adjusts the weights of
corresponding users’ gradients. To distinguish between
malicious and benign gradients far from the benchmark,
we further propose a logarithmic function to remove
malicious gradients.

• We provide comprehensive security analysis and prove
the convergence of the scheme. Besides, the experiments
conducted on real-world datasets show that the PEFL can
effectively resist label-flipping and backdoor attacks, both
of which are typical poisoning attacks in FL.

The rest of this paper is organized as follows.
In Section II and III, we overview the problem statement
and preliminaries. Then, we present the privacy-enhanced
federated learning (PEFL) in detail in Section IV and carry
out the theoretical analysis in Section V. Next, we evaluate
the performance of the PEFL and discuss the related works
in Section VI and VII, respectively. Finally, Section VIII
summarizes this paper.

II. PROBLEM STATEMENT

A. System Model

As depicted in Fig.1, there are four basic entities in our
system:
• Key Generation Center (KGC): KGC is the independent

and trusted agency that distributes and manages all the
public and private keys (pk, sk).

• Data Owners: All data owners, also called users, collab-
oratively train a uniform model with the coordination of
the service provider. For privacy reasons, each user trains
the model locally over the private data on device, then
uploads the encrypted gradients to the service provider.
Besides, we assume that the data held by all data owners
are independent and identically distributed, which is the
same as many prior works [6], [17], [23].

• Service Provider (SP): SP is responsible to receive all
gradients submitted by users and aggregate them (usually
by averaging) so as to obtain an optimized global model.
Simultaneously, it is required to detect the poisoning
attacks launched by potentially malicious users with the
help of the cloud platform.

• Cloud Platform (CP): CP provides service on the pay-per-
use basis. It works with SP to perform the calculations
in this paper. Besides, CP holds a private-public key pair
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Fig. 2. Label-flipping attack.

(pkc, skc) generated by a trusted authority (i.e., KGC in
this paper), which can be used to encrypt data or decrypt
the ciphertext.

B. Threat Model

In this paper, we focus on the privacy and security vulner-
abilities of FL that could be abused by malicious participants.
We assume that each poisoner has his/her own local dataset
drawn from the same distribution as the training sets of other
honest users. Malicious users can manipulate the private data
stored on their devices for data poisoning. Similar to the
prior works [6], [24], [25], to ensure the practicality and
availability of the model, we make an assumption about the
upper limit of the number of malicious users, i.e., |F | ≤ |M |−1

2 ,
where F and M are the number of malicious users and the
total users, respectively, and | · | represents the number of
users in the set. Besides, since the SP and CP have access
to all users’ local gradients, we consider them to be semi-
honest adversaries. That means that both SP and CP are
honest in performing all operations in compliance with the
protocol, while striving to obtain more information based on
the gradients they have mastered, thus compromising users’
data privacy. Also, we assume that there is no collusion among
the four entities (KGC, users, SP and CP) following previous
works [22], [26].

C. Design Goals

With the above threats under consideration, the PEFL has
the following three design goals:
• Accuracy. In this paper, the parameters submitted by

poisoning adversary could cause the model to misclassify,
degrading the accuracy of the trained model. Hence,
a secure and robust FL needs to ensure that the accuracy
of the model is within a reasonable range.

• Robustness. Robustness requires that the correct output
is delivered to all protocol participants, no matter how
the adversary misbehaves.

• Privacy. As prior works [4], [5] have shown, an adversary
may recover users’ sensitive information such as training
samples or memberships by inferring the shared gradi-
ents. To protect users’ data privacy, it is essential to keep
each user’s local gradients confidential.

III. PRELIMINARIES

A. Federated Learning

Unlike traditional deep learning that centralizes all training
data, FL is a promising distributed setting that allows all data

owners to keep data local [27]. In FL, the server orchestrates
the whole lifecycle of training until the model accuracy reaches
the desired level, or the number of iterations reaches the preset
value. The goal of learning is to find optimal model parameters
ω� so that the output of the model ȳ is infinitely close to the
true label for given feature vector x.

In this paper, we focus on the supervised setting, i.e., the
user Ux holds a private dataset Dx , where Dx = {�xi , yi �; i =
1, 2, . . . , s}, and xi ∈ Rv represents v-dimensional feature
vector, yi is the corresponding class label. At the beginning of
each iteration, the server selects a subset of m users that meet
eligibility requirements, such as unoccupied or connected.
Each selected user downloads current model parameters, and
then locally trains the model over their private data. To achieve
that, we exploit the stochastic gradient descent (SGD) algo-
rithm, which is a popular method for iteratively optimizing the
learning model. Instead of taking the whole dataset, the user
randomly selects a small batch B of training data at each
iteration to calculate a loss as:

L(B,ω)← 1

|B|
∑

�xi ,yi �∈B

L f (ω, xi , yi ) (1)

where L f (ω, xi , yi ) is a loss function that computes the gap
between the current output of the model and the real label.
Then, the gradient G ← �ωL(B,ω) is calculated and shared
to the server. At last, the server aggregates all local gradient
vectors and updates the global model as follows:

ωt ← ωt−1 − η

∑
x∈[1,m] Gx

m
(2)

where ωt represents the model parameters after the t-th itera-
tion and η is the learning rate, {Gx, x ∈ [1, m]} (also described
as {Gx}x=m

x=1 in the following) refers to {G1, G2, . . . , Gm},
the set of m users’ gradients.

Note that in this paper, we use bold symbols to represent
vectors, unless there is a special explanation.

B. Poisoning Attack

In the poisoning attacks, the adversary intends to change
the classification boundary of the trained model so that the
specified feature space is mapped to the target class. It has
been demonstrated that a single poisoner can control the entire
training process and compromise users’ data privacy [6], [7].

In this paper, we mainly focus on two types of representative
poisoning attacks: One is label-flipping attack [28]. As shown
in Fig.2, the label of the normal features is flipped to the
target class. For example, the adversary incorrectly marks the
samples with the true label 2 to label 7 for misclassification.
The other is the backdoor attack [29] as illustrated in Fig.3,
which aims to seek a set of parameters to establish strong links
between the trigger and the target label while minimizing the
impact on the classification of benign inputs. For instance,
the adversary expects a model so that any pictures with a
hat as a trigger will be classified as Captain Jack, while the
pictures without a hat will be correctly classified. To achieve
this, Bagdasaryan et al. [29] proposed an optimized model that
minimizes the distance from the original model parameters
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Fig. 3. Backdoor attack.

by adding an item to the loss function of the local model:
αlbackdoor + (1 − α)l�, where lbackdoor is used to introduce
the backdoor, and l� is the Mean Square Error between the
original parameters and new ones.

C. Linearly Homomorphic Encryption

Homomorphic encryption allows computation to be per-
formed directly on encrypted data without requiring access
to a secret key. In this paper, we implement privacy-
enhanced FL by exploiting the linearly homomorphic encryp-
tion (LHE) [30], which is a public-key encryption scheme sup-
porting linearly homomorphic operations over the ciphertexts.

In general, the LHE consists of a tuple of algorithms
(KeyGen, Enc, Dec, Eval) as below:
• HE.KeyGen(1k) → (pk, sk). HE.KeyGen denotes as a

probabilistic polynomial time (PPT) algorithm, whose
input is security parameter 1k, output is public key pk
and private key sk.

• HE.Enc(pk, x) → c. Upon receiving the public key
pk and a plaintext x , the encryption function HE.Enc
outputs the ciphertext c corresponding to x . For sake of
brevity, [[x]]pk is used to stand for the ciphertext form
of encrypting x with the public key pk in the following
paper.

• HE.Dec(sk, c) → x . HE.Dec is a decryption function,
which takes as input the private key sk and a ciphertext
c and returns the plaintext x corresponding to c.

• HE.Eval( pk, c1, c2, fL ) → c	. Given the public key pk
and ciphertexts c1, c2, as well as a linear function fL ,
the evaluate function HE.Eval outputs the ciphertext
c	 such that HE.Dec(sk, c	) = fL (x1, x2), where ci =
Enc( pk, xi ) for i ∈ {1, 2}.

The LHE satisfies the semantic security and function
privacy. The semantic security means that given two mes-
sages x1 and x2 sampled from {0, 1}l and a ciphertext c,
the polynomial-time adversary A distinguishes the ciphertext c
from either x1 or x2 with the probability of at most negli-
gibly better than 1

2 . The function privacy requires that the
homomorphic operations reveal no unnecessary information
on their functionality. We take the Paillier cryptosystem [30]
for example, which is a representative additive homomorphic
encryption with the following two basic homomorphic prop-
erties, i.e., given two plaintexts x1 and x2, a constant r , and a
public key pk, we have: (a) [[x1]]pk · [[x2]]pk = [[x1 + x2]]pk ;
(b) [[x1]]rpk = [[r · x1]]pk . For more details about the LHE,

TABLE I

SYMBOLS

please refer to the paper [30]. We emphasize that optimizing
LHE is an orthogonal direction that is out of the scope of this
paper, and our proposed scheme can obtain direct gains from
any performance improvement of LHE.

IV. PROPOSED SCHEME

In this section, we first discuss an overview of our proposed
scheme, then present our scheme on how to mitigate the
poisoning attacks in detail. For ease of reference, the symbols
that appeared in this paper and corresponding descriptions are
listed in TABLE I.

A. Overview

In the very heart of federated learning lies the assumption
that the local training data held by users are independent and
identically distributed (i.i.d.), which allows the local gradients
to be the unbiased estimate of global update. The assumption
is also the basis for the PEFL which attempts to identify
and block the gradient vectors that deviate from the honest
majority’s gradients.

Our key insight is that the corrupted users submit malicious
gradients for seeking a set of parameters ωτ with a malicious
goal, which differs from the target model ω� of honest users,
i.e., ω� 
= ωτ . This means that there is a perceptible difference
between the malicious gradient vectors and benign ones.
Actually, the low similarity with the benign gradients means
that the gradient is malicious with high probability, which is
the consensus for many related works [6], [24], [25] and us
to identify and block the malicious gradients. In this paper,
we measure the similarity through computing the Pearson
correlation coefficient [31] between gradients, which is one
of the most commonly-used similarity metrics between high-
dimensional variables. The formula is as follows:

ρx,y = Cov(X, Y )

σ (X)σ (Y )
(3)

We can observe from the above formula that the Pear-
son correlation coefficient equals the covariance Cov(X, Y )
divided by the product of the standard deviation of the two
variables σ(X)σ (Y).
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To improve efficiency, we establish a benchmark
(i.e., the coordinate-wise medians in this paper) to distinguish
abnormal behaviors from the honest majority. Then, we design
a logarithmic function to extract effective information and
give weight to each gradient adaptively. In particular,
the gradients with lower correlation are considered to be
abnormal, while their weights should be set to zero for the
gain in accuracy and robustness of the model. To protect the
users’ data privacy, we further propose four secure protocols
for aggregating gradient vectors and optimizing the shared
model in the ciphertext domain, which are implemented by
adopting the additive homomorphic properties of the Paillier
cryptosystem [30].

B. Construction of PEFL

1) System Setup: We require a trusted Key Generation
Center (KGC) to generate a pair of asymmetric key ( pkc, skc)
of the LHE for the Cloud Platform (CP), where the private key
skc is kept only by the CP. All authorized users, meanwhile,
hold the same pair of asymmetric key (pkx , skx ) of LHE
generated by the KGC. Besides, at the beginning of the
protocol, the Service Provider (SP) randomly initializes the
parameters of global model ωini t .

2) Securely Training: The process of secure training con-
sists of two phases: the local training phase and the robust
aggregation phase. Detailed steps are described as follows:

a) Local training phase: In this phase, we assume that
the upper limit of the proportion of poisoners in the subset is
the same as that in the full, i.e., less than 50%. At round t , for
all x ∈ [1, m], user Ut

x receives the encrypted model [[ωt]]pkx

with the public key pkx . After decrypting them, Ut
x trains and

obtains the local gradient vector Gt
x .

Instead of uploading the current gradients alone, we use
the SGD with the momentum [32] to smooth out the update,
which adds a series of previous gradients using an exponential
decay factor γ (0 < γ < 1). Therefore, the parame-
ters submitted by users become: Gx �

∑
�∈[0,t ] γ t−�G�

x .
El-Mhamdi et al. [33] have shown that the momentum can
not only accelerate convergence but also reduce the variance-
norm ratio, which is of benefit to the robustness of the model.
The PEFL inherits this advantage in mitigating the poisoning
attacks in FL.

To protect data privacy, Ut
x encrypts the gradient vector

[[Gx]]pkc with the public key pkc of the CP. Due to the
essential requirements of the cryptographic primitives, for
i ∈ [1, n], each entry Gxi of the gradient vector should be
encoded into integer form as follows:

Gx ← {
⌈

2prec · Gxi
⌋}i=n

i=1 (4)

where �a� ∈ Z represents the nearest integer to the real
number a, and prec is the bits of precision. Besides, Gxi is
the i -th entry in the gradient vector Gx .

To reduce the communication cost, we exploit the tech-
nique of ciphertext packing which packs multiple plaintexts
into one ciphertext, and use the Single Instruction Multiple
Data (SIMD) technique to perform operations on these values
in parallel [34]. Assume the public key pkc = p (a large

Fig. 4. SecMed: Protocol to calculate the coordinate-wise medians without
revealing privacy.

positive integer), for the plaintext space log2 p ≥ 2048 bits,
each user packs d plaintexts into a single ciphertext as follows:

{[[
�log2 p� bits︷ ︸︸ ︷⌈

2prec · Gxi
⌋

0︸ ︷︷ ︸
prec+pad bits

· · · ⌈2prec · Gx(i+d)

⌋
0]]pkc }i=�

p
d �

i=1 (5)

where 0 denotes the zero-padding of pad bits to prevent
from overflowing in ciphertexts additions. Besides, d =⌊

log2 p
prec+pad

⌋
, which takes the integer portion of the real

number, and
⌈ p

d

⌉ = ⌊ p
d

⌋+1. For simplicity, we use Gxi to rep-
resent �2prec · Gxi� 0 in the following. Ut

x eventually sends the

packed ciphertext [[Gx]]pkc = {[[ Gxi · · ·Gx(i+d)]]pkc }i=�
p
d �

i=1 to
the SP.

b) Robust aggregation phase: In this phase, the SP inter-
acts with the CP to identify and block the poisoning attacks
launched by malicious users. It is worth noting that we are the
first to achieve robust aggregation under ciphertext.

First of all, upon receiving the encrypted gradient vec-
tors {[[Gx]]pkc }x=m

x=1 from m selected users, the SP works
with the CP for calculating the coordinate-wise medians
{[[G(med)i]]pkc }i=n

i=1 without revealing {Gx}x=m
x=1 . To achieve

this, we design the secure protocol SecMed. The specific
steps of SecMed are as follows: for x ∈ [1, m], the SP
firstly obscures {[[Gxi ]]pkc }i=n

i=1 by multiplying the ciphertexts
of randomly sampled value ri , and sends the obscured values
R	xi to the CP. The CP then calculates a median for each
coordinate, i.e., for n-dimensional gradient vectors, n medians
need to be calculated. Next, the CP encrypts the medians, and
sends them to the SP. Finally, the SP eliminates the noise to
obtain the desired results. Fig.4 shows the details of protocol
SecMed.
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Fig. 5. SecPear: Protocol to calculate the Pearson correlation coefficient
without revealing privacy.

In the PEFL, the coordinate-wise medians are considered
as the benchmark, i.e., we calculate the Pearson correlation
coefficient ρx,y between the coordinate-wise medians and
the gradient of the user Ut

x . To calculate the correlation
without revealing privacy, i.e., the gradient vectors still keep
confidential for both SP and CP, we propose a secure protocol
SecPear. Specifically, the SP firstly obscures the gradient
vectors by calculating the ciphertext of the gradient vectors
to the r -th power, where r is a randomly sampled non-
zero integer. After decrypting the above ciphertexts, the CP
calculates the correlation of obscured variables and sends the
results to the SP. Fig.5 depicts the protocol SecPear. The cor-
rectness and security are discussed in Section IV-C2 and V-A,
respectively.

For m local gradients, the SP calls m times the protocol
SecPear to obtain m correlation coefficients. Then, each coef-
ficient is re-scaled as below:

μx ← max{0, ln(
1+ ρx,y

1− ρx,y
)− 0.5} (6)

Recall that we consider the users with lower correlation to
be poisoners. The logarithmic function in (6) further encour-
ages a higher divergence for values that are near the two tails
of the function, so that the malicious behaviors are impeded.
Simultaneously, honest users with low correlation are avoided
from being punished as far as possible.

Given the re-scaled values, each gradient vector is assigned
a weight. The SP then updates the shared model under the
ciphertext domain as below:

ωt ← ωt−1 − η
∑

x∈[1,m]

μx

m
∑

x∈[1,m]μx
Gx (7)

The protocol SecAgg is designed to implement the above
process without revealing Gx . Fig.6 illustrates the details.

Finally, the SP communicates with the CP for obtaining
re-encrypted global parameters [[ωt ]]pkx with the public key
pkx held by all users, and then broadcasts to all users
for further training. Fig.7 shows the details of the protocol
SecExch.

Fig. 6. SecAgg: Protocol to aggregate the parameters without revealing
privacy.

Fig. 7. SecExch: Protocol to exchange the parameters without revealing
privacy.

Remark: In this paper, we consider the privacy of the
Pearson correlation coefficient does not need to be protected.
It is clear that the servers cannot invert the magnitude and
sign of gradients even if the coefficient is public. Recently,
Geiping et al. [5] proposed that the similarity between gradi-
ents than the gradient value contains more information about
the training data. They also designed an optimization scheme
based on the cosine similarity between gradients to reconstruct
the training samples. However, the scheme relies heavily
on the sign of the gradient, which is hidden information
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in the PEFL. Therefore, our scheme invalidates the data
reconstruction attack. We admit that the coefficients could also
be used to carry out some attacks, e.g., model steal attack.
However, it is beyond the scope of this paper. The issue
remains open.

C. Discussion

Here, we discuss how to optimize the above protocols, and
give detailed proof of correctness for the protocol SecPear.

1) Optimization: We reduce the communication overhead
of our basic protocols using the following optimizations.

- Removing redundancy: Observe that there exists redun-
dancy in m calls to the protocol SecPear for calculating
the Pearson correlation coefficient between the gradient
vectors submitted by the users and the coordinate-wise
medians. The SP repeatedly sends the medians to the
CP on each invocation of the protocol SecPear. Hence,
in the optimized protocol, the SP only sends once for
the duplicate item.

- Reducing the communication round: We observe that
there exist two independent relationships in the protocol
SecPear and SecAgg. One is that for all x ∈ [1, m],
Rx is independent of each other in protocol SecPear.
The other is that Rx in protocol SecPear and R�

x in
protocol SecAgg are mutually independent. Therefore,
for x ∈ [1, m], the SP reduces the communication round
by sending Rx and R�

x in a single round.

2) Correctness: To ensure that the PEFL can effectively
identify malicious gradients, we need to ensure that the corre-
lation coefficient between the gradients can still be correctly
obtained from the obscured data in the protocol SecPear.

Proposition 1 (Correctness): Given perturbed gradient vec-
tors, the protocol SecPear can correctly obtain the Pearson
correlation coefficient between the gradient vectors submitted
by the users and their coordinate-wise medians.

Proof: According to the homomorphism of encryption
primitives [30], we have: dx = rx Gx in the protocol
SecPear. To prove the correctness, it is equivalent to prove:
ρx,y = ρdx ,dy .

According to the definition of the Pearson correlation
coefficient in Section IV-A, we consider the covariance and
the standard deviation of the variables separately. At first,
the formula of the covariance is as follows:

Cov(dx, dy) = Cov(rx · Gx , ry · G y)

= E[(rx Gx − rx Gx)(ry G y − ry G y)]
= rxry E[(Gx − Gx)(G y − G y)]
= rxryCov(Gx, G y)

where E(Gx) denotes the expectation of the variable Gx , and
Gx is the average of variable Gx . Similarly, the standard
deviation scales with the magnitude of the random variable
as follows:

σ(rx X) =
√

E((rx Gx)2)− (E(rx Gx))2

= rx

√
E((Gx)2)− (E(Gx))2

= rxσ(Gx)

Thus, the equation is satisfied as below:

ρdx ,d y =
Cov(dx, dy)

σ (dx)σ (dy)
= rxryCov(Gx , G y)

rxryσ(Gx)σ (G y)
= ρx,y

In summary, the Pearson correlation coefficient can be
correctly calculated even given the obscured variables.

V. ANALYSIS

In this section, we provide comprehensive proof of the
security property and convergence property of our scheme, and
briefly analyze the efficiency and functionality of the PEFL.

A. Security Property

The function privacy and semantic security of the LHE
against chosen-plaintext attacks (or IND-CPA security for
short) [30] guarantee the strong security of the protocol. In this
section, we provide a hybrid argument that relies on simulators
so as to further demonstrate that during the execution of the
protocol, the joint view of the servers does leak nothing about
the users’ private data except for the information inferred from
the results of the computation.

Proposition 2 (Honest But Curious Security, With Curious
Servers): Given a security parameter κ , any subset of users
U and C = {S P, C P}, let REALU,κ

C be a random variable
representing the joint view of parties in C in the real execution
of above protocols. There exists a probabilistic polynomial-
time (PPT) simulator SIM such that the output of SIM is

computationally indistinguishable from REALU,κ
C :

REALU,κ
C ≡ SIMU,κ

C

where “≡” represents computationally indistinguishable.

Proof: According to the definition of REALU,κ
C , it consists

of all internal state and messages received by the parties in C
during the execution of the protocols. We adopt the standard
hybrid argument used in [13], [17] to prove this proposition,
i.e., given the security parameters κ , we define a PPT simulator
SIM through a series of (polynomially many) subsequent
modifications to the random variables in REALU,κ

C , so that
the output of SIM is computationally indistinguishable from

REALU,κ
C . The detailed proof is described below.

Hyb1 : We initialize a random variable whose distribution
is indistinguishable from REALU,κ

C , the joint views of parties
in C in the real protocol execution.

Hyb2 : In this hybrid, we change the behavior of simulated
honest users Ux ∈ U , so that each user Ux encrypts a randomly
selected vector βx with public key pkc using the LHE, instead
of the original gradient vector Gx . Since only the contents of
the ciphertexts are changed, the IND-CPA security property
of the LHE [30], as well as the two non-collusive SP and CP
setting guarantees that this hybrid is indistinguishable from
the previous one.

Hyb3 : In this hybrid, we simulate the SP to perturb the βxi

by the noise ζi , which is sampled uniformly at random, instead
of [[Gxi ]]pkc · [[ri ]]pkc . It is well known that the parameters
added by uniformly random numbers are also uniformly
random. Since the distribution of the noise ζ is uniformly
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random which is exactly the same as the previous one, and the
perturbed parameters are also uniformly random, this hybrid
here and the previous one are sampled from identical distrib-
ution, i.e., uniformly random. Besides, the IND-CPA security
property of the LHE, as well as the two non-collusive SP and
CP setting guarantees that this hybrid is indistinguishable from
the previous one.

Hyb4 : In this hybrid, we change the input of protocol
SecPear executed by SP and CP with [[βx]]pkc and [[θi ]]pkc

instead of [[Gx]]pkc and [[G(med)i ]]pkc . The IND-CPA security
property of the LHE, as well as the two non-collusive SP and
CP setting guarantees that this hybrid is indistinguishable from
the previous one.

Hyb5 : In this hybrid, for all users Ux ∈ U , we simulate the
SP to compute [[βx]]ζx

pkc
instead of [[Gx]]rx

pkc
, where x ∈ {1, m}.

Although the CP holds the private key skc which can be used
to decrypt the above ciphertexts, the parameters multiplied
by a random number are still uniformly random, which is
consistent with the previous hybrid. Hence, this hybrid is
indistinguishable from the previous one.

Hyb6 : In this hybrid, we change the input of protocol
SecAgg executed by SP and CP with [[ξ t−1]]pkc and [[βx]]pkc

instead of [[ωt−1]]pkc and [[Gx]]pkc . Since only the contents
of the ciphertexts are changed, the IND-CPA security of
the LHE, as well as the two non-collusive SP and CP set-
ting guarantees that this hybrid is indistinguishable from the
previous one.

Hyb7 : This hybrid is similar to Hyb3, for all users Ux ∈ U ,
we simulate the SP to perturb the βx by the random noise ζx

instead of [[Gx]]pkc · [[rx ]]pkc . The IND-CPA security property
of the LHE, as well as the two non-collusive SP and CP
setting guarantees that this hybrid is identically distributed to
the previous one. Hence, this hybrid is indistinguishable from
the previous one.

Hyb8 : In this hybrid, we change the input of protocol
SecExch executed by SP and CP with [[ξ t]]pkc instead of
[[ωt ]]pkc . The IND-CPA security property of the LHE, as well
as the three non-collusive entities (i.e., SP, CP and users)
setting guarantees that this hybrid is indistinguishable from
the previous one.

Hyb9 : Similar to Hyb3, instead of sending: [[r+ωt]]pkc =
[[ωt ]]pkc [[r]]pkc , we substitute the parameters sent to the CP
for re-encrypting with [[ξ t]]pkc [[ζ t ]]pkc . Even the CP hold-
ing the private key skc can decrypt the above ciphertexts,
the hybrid and (r + ωt ) have identical distribution, i.e., uni-
formly random. Thus, this hybrid is indistinguishable from the
previous one.

The argument proves that there is a simulator SIM sampled
from the distribution described above so that its output is
computationally indistinguishable from the output of REAL.
Hence, the PEFL holds the security property that the curious
SP and CP learn nothing about users’ private data.

Proposition 3: The PEFL holds the security property
that the malicious users cannot compromise other users’
privacy.

Proof: In our threat model, the malicious users as
active adversaries launch attacks and compromise other

users’ privacy. As indicated in [7], they deduce if there exist
the target samples in the training dataset by exploiting the
erroneous gradient vectors. The attack depends heavily on the
aggregation rule by average. In this paper, each gradient vector
is adaptively given a weight instead of treating them equally.
According to experimental results in Section VI-B2, the PEFL
reduces the success rate of the attack to 0.04, i.e., the malicious
users fail to infer whether the target sample is used during the
training.

Hence, the PEFL holds the security property that malicious
users can’t compromise other users’ privacy.

B. Convergence Property

Now, we prove the convergence of the proposed scheme.
Claim 4 (Error Term): There exists an error term 	

between the malicious gradients and benign ones such that∑
x∈F Gτ

x =
∑

x∈H Gx + 	 holds.
Proof: We generalize the process of poisoning attacks to

seek a set of model parameters ωτ with malicious goals, which
differs from the target model ω� of honest users, i.e., ω� 
= ωτ .
Let the distance between ω� and ωτ be h̄, i.e., h̄ = ω� −ωτ .
Note that malicious users and honest users can only achieve
their goals by submitting gradients.

Now we formally define the classic poisoning attack model.
Suppose that in a specific round, the correct gradient vectors
{Gx, x ∈ [1, m]} are independent and identically distrib-
uted (i.i.d.) samples drawn from the random variable G ←
�ωL(B,ω), where E[G] = g is an unbiased estimator of the
gradient. Thus, E [Gx] = E[G] = g, for any x ∈ [1, m].
With the malicious users, the actual vectors {G̃x, x ∈ [1, m]}
received by the SP are as follows:

G̃x =
{

Gx, if the x-th user is honest,

Gτ
x, if the x-th user is malicious.

Note that a very important assumption for the convergence
properties of SGD algorithm is that each benign gradient
is an unbiased estimation of the actual gradient, which is
typically ensured through uniform random sampling. However,
the gradients submitted by malicious users break the restriction
of uniform random sampling. Therefore, there is a clear differ-
ence between malicious gradient vectors and benign gradient
vectors.

According to the definition of the SGD algorithm used to
update the model parameters, we have:

ωt ← ωt−1 − η

∑
x∈[1,m] G̃x

m

Given the gradients of malicious users {Gτ
x, x ∈ F}, where

F represents the set of malicious users, the goal of malicious
users is to obtain parameters of the following form: ωτ ←
ωt−1− η

∑
x∈F Gτ

x|F | . Analogously, given the gradients of honest
users {Gx, x ∈ H }, where H represents the set of honest
users, honest users aim to obtain parameters of the following
form: ω� ← ωt−1 − η

∑
x∈H Gx
|H | . According to the parameter

distance defined previously (i.e., h̄ = ω� − ωτ ), we have:
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h̄ = η
∑

x∈F Gτ
x

|F | − η
∑

x∈H Gx
|H | . And then we get:

∑
x∈F

Gτ
x =
|F |
η

h̄ +
∑

x∈H Gx

|H | |F |

= |F |
η

h̄ + (
|F |
|H | − 1)

∑
x∈H

Gx +
∑
x∈H

Gx

= |F |
η

h̄ + (
|F |
|H | − 1)|H |g +

∑
x∈H

Gx

Thus, there exists an error term 	 between the malicious gra-
dients and benign ones because of the different purposes, i.e.,∑

x∈F

Gτ
x =

∑
x∈H

Gx + 	

where 	 = |F |η h̄ + ( |F ||H | − 1)|H |g.
Proposition 5 (Convergence): Given the detailed steps of

the PEFL as described in Section IV-B, the convergence rate
of malicious or/and honest users is O( 1

T 2 ) over T iterations.
Proof: The PEFL follows the outline of the adaptive

learning rate method [35], which has been applied to the SGD
algorithm and provided a convergence guarantee. As we know,
it is O( 1

T 2 ) that the convergence rate of the SGD algorithm
with a constant learning rate.

Assume that the adaptive learning rate ηx = η× μx∑
x∈[1,m] μx

of user Ux is decided by a function fs(x, t), where t rep-
resents the current iteration. Ux comes from either F or H ,
which denote the set of malicious users and honest ones in
the protocol, respectively. As mentioned earlier, the percent-
age of the malicious users is less than 50% in this paper,
i.e., 2|F | < |F |+ |H |. The convergence property of SGD can
be applied to our solution as long as the training is performed
with the honest users’ data, which satisfies the following
conditions:

Condition 1: ∀x ∈ F, fs (x, t)→ 0

Condition 2: ∀x ∈ H, fs(x, t)→ 1

We consider G�
x to be the ideal gradient from the initial

model ωini t to optimized model ω�
x relative to Ux ’s local

data. According to Claim 4, we know that:
∑

x∈F Gτ
x =∑

x∈H G�
x+	. In this regard, the PEFL can identify abnormali-

ties based on the difference and reduce the weight of malicious
gradients. If the malicious goal has been achieved, 	 increases
as the number of iterations increases. That causes that the
rescaled coefficient approaches 0, i.e., fs(x, t) → 0. Hence,
the weights of poisoners are 0, which satisfies the Condition 1.
Accordingly, the effect of the PEFL on honest users
satisfies:

lim
t→∞

∑
x∈H

μx∑
x∈[1,m]μx

= 1

That is, the sum of the weights of the honest users
approaches 1, which satisfies the Condition 2.

The above proof demonstrates that the PEFL fulfills both
conditions. Therefore, the convergence rate of the PEFL is the
same as the SGD with the adaptive learning rate, i.e., O( 1

T 2 ).

C. Efficiency Evaluation

We now discuss the communication and computation over-
head of the PEFL. As discussed in Section IV-C1, we optimize
the communication overhead of the basic PEFL. In the follow-
ing, we denote PEFLimd as the optimized scheme.

1) Communication Overhead: In the PEFL, the SP interacts
with the CP to perform four secure protocols for secure
aggregation. What needs to be mentioned is that the increased
factor in communication overhead using ciphertext packing
technology is around σ = 2(1 + pad

prec ) as discussed in [16].
For example, we take pad = 15, and prec = 32, so the
increased communication factor is 2.93. In the SecMed, the SP
interacts with the CP to obtain n coordinate-wise medians,
where n represents the dimensionality of the gradient vector.
Hence, the communication overheads of the SP and CP are
O(σ T nm) and O(σ T n), respectively, where T is the number
of iterations, and m represents the number of users. For each
user, the protocol SecPear is invoked once at each iteration,
so the communication round is O(T m). We note that the SP
sends two encrypted vectors to the CP in the SecPear, which
incurs the communication cost of O(2σ T nm). For the CP,
it sends m Pearson correlation coefficients in plaintext to the
SP. Thus, the communication round and cost should be O(T m)
and O(T m), respectively. Then, the protocol SecAgg is called
to securely update model parameters.

For each iteration, both SP and CP communicate m obscured
gradient vectors in the form of ciphertext to each other, so the
communication rounds and costs are the same, O(T ) and
O(σ T nm). Finally, for both SP and CP, the protocol SecExch
incurs the same communication rounds and costs, i.e., O(T )
and O(σ T n), respectively.

In the PEFLimd , the SP and CP only interact once to
communicate all the data used in the protocol SecPear and
SecAgg. Hence, the communication round of the SP and CP
in protocol SecPear should be O(T ), and 0 for the SP to call
protocol SecAgg. In this round of communication, the SP sends
the encrypted gradient vectors that have been obscured in two
ways, as well as their coordinate-wise medians. Therefore,
the communication overhead of the SP is O((2m + 1)σ T n).
The data sent by the CP is the same as that in the PEFL.
So the communication overhead is the same. As described in
TABLE II, we can observe that PEFLimd is superior to basic
PEFL in terms of communication overhead.

2) Computation Overhead: In the PEFL, the main limitation
lies in the computation costs of the robust aggregation phase.
In this phase, the SP interacts with the CP for calculating
the coordinate-wise medians, Pearson correlation coefficient
and weights of m gradients vectors in the ciphertext domain.
To compute the coordinate-wise medians, the easiest method
is to exploit some sorting algorithm with the complexity of
O(nm log m) to each dimension. In the PEFL, we obtain
the medians by exploiting the BFPRT algorithm, which is a
famous algorithm to solve the classical problem of choosing
the k-th largest or k-th smallest number from m numbers,
with the worst time complexity of O(m). Hence, the com-
putation cost of the protocol SecMed on average takes linear
time O(nm). For each user, we only need to calculate the
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TABLE II

COMPARISON OF COMMUNICATION OVERHEAD BETWEEN PEFL AND PEFLimd

TABLE III

COARSE-GRAINED COMPARISON

correlation once. Therefore, the computation overhead
incurred by the protocol SecPear is also O(nm). Besides,
the parameter update phase of PEFL does not introduce
additional computational complexity, except for adjusting the
weight which requires O(m) computational complexity. Over-
all, the computation complexity incurred in the defense phase
is O(T nm). On the users’ side, the computation cost increases
linearly with the number of the model parameters. This makes
the computation cost of each user as O(T ns), where s is the
number of samples held by each user.

Compared with Krum [6] and Bulyan [24], whose com-
putation cost increases quadratically with the increase in the
number of users, the PEFL is more advantageous in terms
of computation cost. We also provide a coarse-grained com-
parison with the other five state-of-the-art works in terms of
computation overhead, which is illustrated in TABLE III.

D. Functionality

Here, we analyze the functional advantages of the PEFL
by comparing with five state-of-the-art robust schemes, which
are Krum [6], Bulyan [24], Trimmed Mean [25], Detox [20]
and Client Detection [36]. TABLE III presents the coarse-
grained comparison in terms of the number of poisoners,
computation complexity, redundancy or not, prior knowledge
of the numbers of poisoners or not, and privacy.

Since Bulyan is an improved version of Krum, Bulyan
has stricter limits on the number of poisoners and incurs
higher computation complexity. The runtime per iteration of
both Krum and Bulyan is often quadratic in the number of
users, or even higher. While the Trimmed Mean and PEFL
are computationally effective, almost nearly linear in the
number of users. The computation complexity of Detox and
Client Detection is also almost remarkably correlated linearly
with the number of users, since both of them require heavy
redundancy to filter out almost all malicious gradients.

Besides, the design of Krum, Bulyan and Trimmed Mean
requires the number of poisoners as prior knowledge, which
contributes to improving the effectiveness of the defenses.
In real scenarios, this assumption is unrealistic, i.e., the

identity and number of the adversary cannot be perceived
in advance. For each poisoned sub-model in both Detox and
Client Detection, more than half of the users need to report
exceptions. So they do not need this information as prior
knowledge. In the PEFL, we focus on designing a practical
and effective robust aggregation rule, our scheme thus does
not consider the assumption to be reasonable.

The solution of client detection [36] claims to protect
users’ data privacy against malicious users, which achieves
by a trusted server using differential privacy to perturb the
model parameters from being compromised. However, both
the differential privacy mechanism and client-side detection
cause an increase in the probability of false positives. Besides,
the server is not always trusted. According to prior works [17],
the server could compromise the users’ data privacy. In the
PEFL, the IND-CPA security property of the LHE and two
non-collusive servers setting guarantee users’ data privacy.
Security proof is given in Section V-A.

VI. PERFORMANCE EVALUATION

In this section, we conduct experiments with real-world
datasets to evaluate the performance of the PEFL. All exper-
iments are run in a Lenovo server with the configuration of
Ubuntu 18.04, Intel(R) Xeon(R) E5-2620 2.10 GHz CPU and
16GB RAM.

A. Experiment Setup

We present the performance of the PEFL from two aspects:
a. Validating the claim regarding the accuracy. b. Validating
the robustness of the PEFL against real attacks. To highlight
the advantages of the PEFL, except for three typically robust
schemes, i.e., Krum [6], Bulyan [24], Trimmed Mean [25],
we establish a control group – unmodified FL as a baseline
which takes average as the aggregation rule.

1) Attacks: We mainly focus on two representative poison-
ing attacks: label-flipping attack and backdoor attack. To simu-
late the label-flipping attack, we re-label the source class held
by the malicious users as the target class. The source class
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Fig. 8. Comparison of accuracy with different number of poisoners.

and target class are 1 and 9 in our experiments, respectively.
To reproduce the backdoor attack, in each round of training,
malicious users randomly sample a certain number of images
(e.g., 1000) from the private dataset, and cover the 5 × 5
pixels at the bottom right with the maximum intensity. All
these modified pictures reset their label to the target class,
e.g., the airplane for the CIFAR-10 dataset. The 5× 5 pattern
is considered as the trigger.

2) Datasets and Model Architectures: To evaluate the per-
formance of the PEFL, we simulate two scenarios: handwritten
digit recognition (Thdr ) and image recognition (Tir ). Thdr aims
to classify handwritten digits into one of 10 classes (0-9)
according to the learned features. In this task, we use
a simple two-layer fully connected network as the model
structure, and the parameter settings of each layer are
724×100 and 100×10 in sequence. The data set is the classic
MNIST dataset, including 60,000 handwritten digit pictures
with a size of 28× 28, and 10,000 test samples. For the Tir ,
our experiments are implemented on the CIFAR-10 dataset
which has a total of 60,000 color images. These images are
32 × 32 in size and are divided into 10 categories (such as
airplanes, cars and birds), each with 6000 images. There are
50,000 sheets for training and another 10,000 for testing. The
model architecture of this task is composed of two layers of
convolution and three layers of fully connected. Moreover,
the training data is distributed to each user by executing
torch.utils.data.distributed.DistributedSampler().

3) Hyper-Parameters: The total number of users we used
in the experiment is 51. For each experiment, we set the batch
size of 27, the momentum of 0.9 and the initial learning rate
to 0.1. Each reported data takes an average of five experiments.

B. Experiment Results

1) Accuracy Evaluation: Many factors affect the model
accuracy, including the model capacity, the quality and quan-
tity of data, the number of iterations, and the proportion of
malicious users. In our experiments, we use public datasets to
evaluate the performance of our solution in two application
scenarios, we thus only show the accuracy of the model by
sliding the value of the latter two factors, freezing the capacity
of the model and ignoring the problem of data quality and
quantity. It is worth mentioning that the model architecture
for Tir is relatively simple, while the CIFAR-10 dataset with

more complex features is under-fitting, resulting in low model
accuracy. However, we only focus on a difference in accuracy
between different defenses here. In the following, we describe
the influence of these two factors on model accuracy.

a) Effect of different proportions of poisoners: Intuitively,
the more benign data hold by honest users in the training
brings about better model accuracy. Prior works have shown
that the vanilla federated learning with the aggregation rule
of average is vulnerable even if there is only one malicious
participant. Fig.8 outlines the comparison of test accuracy
with the different number of poisoners. Bulyan in the fig-
ure is incomplete because the upper limit of the scheme
for the proportion of poisoners is 25%. We observe that
the accuracy of all defenses decreases as the number of
poisoners increases. We analyze this because as the proportion
of poisoners increases, the amount of valuable data in the
training process decreases, which leads to a drop in model
accuracy. After the proportion of poisoning is more than
25%, we can obtain that the degree of decline became larger.
However, no matter in which application scenario, the PEFL
can still maintain a comparative advantage compared with
other defenses. We attribute it to the benefit of the coordinate-
wise medians and aggregating parameters around the medians.
Another interesting thing is that the accuracy of the PEFL,
Bulyan and Trimmed Mean is significantly higher than Krum.
A reasonable explanation is the number of aggregated para-
meters. As already mentioned, Krum only selects a set of
candidate parameters for updating, discarding the remaining
(m−1) sets of gradient vectors. While others aggregate benign
parameters as many as possible.

b) Effect of different iterations: As the number of iter-
ations increases, the model can extract more effective data
features, which also leads to more accurate test accuracy of
the model. Here, we ignore the problems of under-fitting and
over-fitting caused by too small or large model capacity. Fig.9
shows the comparison of accuracy with different iterations.
Moreover, due to the restriction of Bulyan on the proportion
of poisoners, Fig.9a and Fig.9b fix 25% of poisoners, i.e.,
12 poisoners are mixed in a total of 51 users. Fig.9c fixes 20%
of poisoners since Fig.8c shows that the accuracy of the three
schemes is very close when the proportion of poisoners is 20%.
We can observe that the accuracy of the PEFL is slightly higher
than Bulyan and Trimmed Mean. This is because the PEFL
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Fig. 9. Comparison of accuracy with different iterations.

TABLE IV

ACCURACY OF Thdr UNDER THE LABEL-FLIPPING ATTACK

adjusts the weight of each gradient, which further improves
the reliability of the remaining parameters and benefits the
convergence of the model.

2) Robustness Evaluation: The robustness in this paper
is considered to be the ability to defend against poisoning
attacks. We evaluate the robustness of defense schemes by
describing the success rate of the attack. For the label-flipping
attacks, we test the success rate of the attack by observing
the proportion of the target class identified in the test set.
In TABLE IV, we present the adversary’s attack success
rate, the classification accuracy of the source and non-source
classes under different proportions of poisoners, where non-
source classes refer to the set of all classes except the source
class. We observe that the baseline is very vulnerable even
if there are only a few poisoners, the attack success rate
achieves as high as 100%. This also highlights the importance
of our research direction. Observing the experimental results,
we obtain that even if the source class held by a malicious
user is flipped and labeled as the target class, the classification
accuracy of the source class is slightly higher than that of
other non-source classes. We analyze this because the data
features of the source class with the label of 1 are easier
to identify than other data in the experiment. To verify the

defense effect of PEFL on different source and target classes
pairs, Fig.10 enumerates the attack success rate (i.e., The ratio
of the source class misclassified as the target class) of different
source classes and target classes when the probability of the
poisoner reaches 50%, where the Y-axis lists the source class,
and the X-axis refers to the target class designated by the
adversary. We can observe that the maximum attack success
rate is 0.04, which also demonstrates that the PEFL is robust
under the label-flipping attack.

Different from the label-flipping attack, for the backdoor
attack, we add the trigger to the test samples and observe the
classification of pictures with triggers. TABLE V lists three
sets of data for each scheme under different proportions of
malicious users: the proportion of target classes with triggers
classified as target classes, the proportion of pictures with
triggers classified as target classes, and the proportion of
correct classification of non-target pictures with triggers. Our
experiment results show that as the proportion of poisoning
increases, the PEFL can still effectively defend against back-
door attacks and maintain high accuracy.

In summary, according to the experimental results, we can
clearly obtain that the PEFL has shown superior performance
than other solutions (i.e., Krum, Bulyan and Trimmed Mean)
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TABLE V

ACCURACY OF Thdr UNDER THE BACKDOOR ATTACK

Fig. 10. Attack success rate with different source and target class.

in defense ability and classification accuracy under the label-
flipping attack and backdoor attack.

3) Comparison With Median-Based Schemes: The effec-
tiveness of the PEFL mainly depends on the reliability of
the coordinate-wise medians. We thus provide a comparison
with three median-based schemes, i.e., GeoMed, MarMed,
MeaMed. By definition in [37], GeoMed means the geographic
median of all gradient vectors, MarMed takes the coordinate-
wise medians as the update, and MeaMed averages the
top-(m − f ) values nearest to the coordinate-wise medians,
where f is malicious users in the subset of users. Fig. 11
depicts the accuracy of Thdr of four schemes with different
proportions of poisoners under two attack methods. Since Tir

has similar results, we only use Thdr to show the performance
advantages of the PEFL here. We analyze that the reason
for the low accuracy of GeoMed and MarMed is mainly
each iteration only takes one user’ gradient as the update.
Similar to Krum, it ignores the contribution of the remaining
(m− f −1) honest users. When up to 50% of poisoners in the
protocol, GeoMed does not converge. Compared with GeoMed
and MarMed, MeaMed has higher prediction accuracy under
both attacks. However, the design of MeaMed requires the
number of poisoners as prior knowledge. As discussed earlier,
this is an unrealistic assumption.

Fig. 11. Comparison of accuracy with different number of poisoners.

Compared with three median-based schemes, the PEFL has
the best accuracy advantage under both attacks and does not
need to know the number of poisoners in advance. In summary,
the PEFL outperforms the above median-based schemes.

VII. RELATED WORKS

A. Robust Aggregation Method

In response to the poisoning attacks in federated learning,
the machine learning community has proposed a few defense
schemes [6], [20]. In general, existing solutions mainly involve
the following three methods. From the data level, statistics-
based aggregation allows the parameter server to aggregate
parameters based on statistics extracted from training data or
gradients, rather than averaging them. Representative exam-
ples include Krum [6] based on Euclidean distance, and
GeoMed [21] based on geographic median. These methods,
however, are at considerable cost to the training accuracy
and efficiency. From the model level, the parameter server
assigns the updated sub-model to the data owners to determine
whether there is an abnormality [20], [36]. Obviously, this
method inevitably incurs redundant communication overhead.
Worse of all, it can only tolerate a limited number of poisoners.
Recently, some researchers have proposed to disconnect the
end-to-end mapping from the specific feature space to the
target label space from the neuron level [38], [39]. For exam-
ple, Wang et al. [39] proposed the Neural Cleanse, which
identifies the existence of trojaned behaviors by discovering
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small input disturbances that continuously change the output of
the model, and then prunes the neurons via the model patching
algorithm. However, this approach requires experts in neural
networks and vast quantities of clean samples.

Due to relevance to this paper, we present more statistics-
based defenses here, whose key idea is to focus the aggregation
rules on the benign gradient vectors as much as possible.
For example, Blanchard designed Krum [6], which selects
one of the gradients most similar to the other gradients
as the global update. The similarity here is measured by
calculating the sum of the Euclidean distance of (m − f − 2)
gradients closest to the gradient vector. The gradient with the
smallest sum is selected by Krum. Bulyan [24] is essentially
a variant that combines Krum and Trimmed mean. Bulyan
first chooses less than (m − 2 f ) gradients with the same
rule as the Krum, then averages the parameters closest to the
median of the gradient vectors as the global update. However,
Fang et al. [40] suggested that both of the above aggregation
rules are not effective enough for an adversary with a certain
amount of knowledge, who can carefully design a set of
similar gradients to befuddle the aggregation rules. Trimmed
mean [25] removes some extreme values, and then averages
the remaining parameters as the global update. GeoMed [21]
takes the median of the gradients as global update. However,
their computational complexity exponentially increases with
the dimension of gradients. Besides, Fang et al. [40] proposed
a scheme to pull the above aggregation rules into the trap by
forging the maximum and minimum values of the gradients
based on the mean and variance of the user’ parameters.

However, the aforementioned statistics-based defenses
impair the model accuracy. In this paper, we presented the
PEFL with satisfactory accuracy, which mainly benefits from
the coordinate-wise medians.

B. Privacy-Preserving Federated Learning

Recently, enabling privacy-preserving FL mainly bases on
the following three underlying technologies: Differential Pri-
vacy (DP) [12], Secure Multi-Party Computation (SMC) [14],
Homomorphic Encryption (HE) [18], and Trusted Execution
Environment (TEE) [41], [42]. However, each of the above
methods has its limitations, which remains the implementation
of privacy-preserving FL being an open problem.

Specifically, Shokri and Shmatikov [12] first proposed
a privacy-preserving FL framework, which is implemented
by selectively sharing small subsets of parameters of the
model and perturbing them by exploiting the DP mechanism.
However, this scheme has to make a trade-off between accu-
racy and privacy. To further improve the utility of the model,
Abadi et al. [10] designed the Moments Accountant to keep
track of a bound on the moments of the privacy loss during the
training process with DP. However, Jayaraman and Evans [19]
showed that current DP based works are rarely to
offer acceptable utility-privacy trade-offs. Payman [26] and
Bell et al. [14] protected the privacy of training data by using
secret sharing, which is representative technology to imple-
ment SMC. However, it requires users to stay online, which
introduces a new performance bottleneck for the actual distri-
bution scenarios. Recently, Tramer and Boneh [42] proposed

a private execution of neural network in TEE, which isolates
the sensitive computations from untrusted software by using
specialized hardware. Unfortunately, this approach is difficult
to extend on a large scale due to its expensive cost in hardware
and scarcity of scalability.

The above schemes are only limited to privacy issues in FL.
In this paper, we build a feasible bridge between privacy pro-
tection and defense against poisoning attacks, which provides
new idea for the design of future FL frameworks.

VIII. CONCLUSION

In this paper, we have proposed a novel framework called
PEFL, which can provide privacy-preserving federated learn-
ing while guaranteeing robustness against representative data
poisoning attacks. The PEFL is proved secure and conver-
gent with the comprehensive theoretical analysis. Moreover,
the experimental results demonstrated that the comparable
performance of PEFL in terms of accuracy and robustness.
In future work, we will focus on improving the accuracy of
the PEFL and further exploit ways to optimize the efficiency.
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