
Systematic Literature Review of Empirical Studies on Mental Representations of
ProgramsI,II

Leah Bidlakea,∗, Eric Aubanela, Daniel Voyerb

aFaculty of Computer Science, University of New Brunswick, 550 Windsor St, Fredericton, NB, E3B 5A3, Canada
bDepartment of Psychology, University of New Brunswick, Canada

Abstract

Programmers are frequently tasked with modifying, enhancing, and extending applications. To perform these tasks, program-
mers must understand existing code by forming mental representations. Empirical research is required to determine the mental
representations constructed during program comprehension to inform the development of programming languages, instructional
practices, and tools. To make recommendations for future work a systematic literature review was conducted that summarizes the
empirical research on mental representations formed during program comprehension, how the methods have changed over time,
and the contributions of the research.

The data items included in the systematic review are empirical studies of programmers that investigated the comprehension and
internal representation of code written in a formal programming language. The eligibility criteria used in the review are meant to
extract studies with a focus on knowledge representation as opposed to knowledge utilization.

The results revealed a lack of incremental research and a dramatic decline in the research meaning that newly developed or
popularized languages and paradigms have not been a part of the research reviewed. Accordingly, we argue that there needs to be a
resurgence of empirical research on the psychology of programming to inform the design of tools and languages, especially in new
and emerging paradigms.

Keywords: Mental Representations, Program Comprehension, Systematic Literature Review

1. Introduction

Programmers are frequently tasked with modifying, enhanc-
ing, and extending applications. To perform these tasks, pro-
grammers must first understand the existing code. During the
comprehension process, programmers form mental representa-
tions of the code they are working with (Détienne, 2001). Em-
pirical research is required to determine how these mental rep-
resentations are created and the form that they take as a starting
point to developing programming languages and tools that fit
with the underlying representations. Such an approach would
assist programmers in the comprehension process and promote
the formation of accurate mental representations.

Research in program comprehension encompasses both the
study of the cognitive processes used by programmers to under-
stand code and how programming languages and tools support
these cognitive processes (Storey, 2006). The cognitive com-
ponent of program comprehension that is of interest here is the
abstract mental representations that are formed during program
comprehension. These mental representations, often referred to

IDeclarations of interest: none
IIThis research did not receive any specific grant from funding agencies in

the public, commercial, or not-for-profit sectors
∗Corresponding author
Email addresses: leah.bidlake@unb.ca (Leah Bidlake),

aubanel@unb.ca (Eric Aubanel), voyer@unb.ca (Daniel Voyer)

as mental models, are founded in the theories of text compre-
hension (Pennington, 1987a).

There have been a variety of differing approaches to men-
tal models including how they are defined and inferred (Cañas
and Antolı́, 1998). Cañas and Antolı́ suggested that the reason
for this is because researchers from different disciplines study
mental models using different tasks and are sometimes inter-
ested in different aspects of the representations. The unifying
definition for a mental model, proposed by Cañas and Antolı́
(1998), is a dynamic representation formed in working mem-
ory as a result of using knowledge from long term memory and
the environment. Mental model representations are described
by Cañas and Antolı́ (1998) as both a process and the result of
a simulation process elicited by a task.

The mental model approach to program comprehension is
based on the propositional or text-based model and the situation
model that were first developed to describe text comprehension
(Détienne, 2001). The program model, formed by programmers
when applying structural knowledge to the code resulting in a
surface level representation, corresponds to the propositional or
text-based model formed during text comprehension. The sit-
uation model, developed to describe the abstract representation
of text, corresponds to the domain model formed during pro-
gram comprehension when domain knowledge is used to form
an understanding of the real world situation represented by the
program. The mental model approach to program comprehen-
sion involves the construction of both the program model and

Preprint submitted to The Journal of Systems and Software July 15, 2019

the domain model (Détienne, 2001).
Empirical research on program comprehension has a direct

impact on the development of programming languages and
tools. Boshernitsan et al. (2007) developed iXj, a tool that uses
a visual language to allow programmers to specify and execute
code changes. The design of iXj was guided by the Cognitive
Dimensions framework developed by Green (1989) to provide
programmers with visual representations that reflect their own
mental model of the source code. Tubaishat (2001) developed
a theoretical model, Conceptual Model for Software Fault Lo-
calization (CMSFL), from empirical research on programming
knowledge and plans. The CMSFL model was then used as the
basis for developing the BUG-DOCTOR, an Automated As-
sistant Fault Localization (AASFL) tool that assists program-
mers with software fault localization. Arab (1992) developed a
tool for formatting and documenting Pascal programs to assist
programmers to write more readable and easier to understand
programs. The development of this tool was influenced by em-
pirical research that identified formatting and documenting as
important factors in program comprehension.

Other common approaches to empirical research on pro-
gramming languages and tools have been usability and com-
parative studies. Usability studies examine the human use of
programming languages, whereas comparative studies compare
the features of different programming languages. The usabil-
ity studies reviewed by Hornbæk (2006) employed a variety of
measures and definitions of usability, and often compared pre-
vious or competing versions. Comparative studies, including
those performed by Prechelt (2000) and Nanz and Furia (2015),
analyzed performance of programs written in programming lan-
guages from procedural, functional, and scripting paradigms,
and also compared languages within these paradigms. Perfor-
mance in these studies was measured using quantitative analysis
of the program features such as lines of code, runtime, memory
usage, and reliability. Programmer effort was also analyzed by
Prechelt (2000) who measured the time required to write a pro-
gram. Comparative studies on parallel programming languages
have taken a similar approach in comparing solutions to prob-
lem sets or algorithms written in different parallel programming
languages (Feo, 2015; Chamberlain et al., 2000). The study
conducted by Feo (2015) also compared qualitative measures of
how the programmers who wrote the solutions felt about how
easy or difficult the program was to write, and what they felt
was good or bad about the programming language.

The usability and comparative studies mentioned here are
comparing programming languages that are already widely
used. Studying a language when it is already widely used offers
limited advances unless one is willing to modify the language
as a result of the empirical observations. These studies did not
take into consideration the user and their ability to understand
and provide maintenance for programs written in different pro-
gramming languages. Comparative studies are also limited in
that they only give the user choice between existing languages;
they do not direct the development of new languages that may
require a complete departure from the current approaches to
provide the user with languages and tools that align with their
cognitive processes. The shift from comparative studies to re-

search on program comprehension, especially in parallel pro-
gramming where there is a significant lack of theory (Mattson
and Wrinn, 2008), is necessary to inform the development of
programming languages, instructional practices, and tools.

The focus on program comprehension is of particular interest
as many of the tasks performed by programmers, such as main-
taining and modifying existing applications, require the under-
standing of code (Corritore and Wiedenbeck, 1999). Empirical
research is required to develop an understanding of the com-
prehension strategies used by programmers. With the growing
number of programming languages and tools under develop-
ment with the goals of increasing productivity and ease of learn-
ing and use, there is a great need for this empirical research.

Before conducting more empirical research on mental repre-
sentations, we need to know the current state of affairs in this
area. Knowledge of past empirical research can assist in de-
veloping methods that can more accurately target and capture
the mental representations under study. By discovering what
research has already been done, we can also learn what gaps
remain.

Accordingly, the purpose of the literature review conducted
here is to provide an analysis of the research that has been done
to advance the body of knowledge related to the psychology
of programming. The present review summarizes the empir-
ical studies that have contributed to the understanding of the
comprehension strategies used by programmers to understand
code, and the mental representations created in this process.
Empirical studies related to problem solving, program design
and development, debugging skills, programmer performance,
and learning programming languages that have no bearing on
mental representations are not included in this review. The re-
search questions addressed by the present review are as follows:

1. To date, what empirical research has examined mental rep-
resentations during program comprehension?

2. How have the methods used in the studies changed over
time?

3. What are the contributions that have resulted from empiri-
cal research on program comprehension?

2. Current Study

To answer the research questions posed in this study, we con-
ducted a systematic review. Systematic reviews are performed
to collect literature relevant to specific research questions by us-
ing a well defined and documented search strategy and specific
inclusion and exclusion criteria (Budgen and Brereton, 2006).
The systematic review included databases from each of the rel-
evant fields: psychology and computer science. All available
publication types (e.g., theses, journal articles, conference pa-
pers, books) were included in the systematic review because
the research fields involved in this study use some publication
types more frequently than others. For example, computer sci-
ence publications are more often conference papers whereas
psychology publications tend to be journal articles. The inclu-
sion of theses makes it more likely that unpublished work will

2

be considered. To understand how research on program com-
prehension has developed over time, the review was not limited
to a particular time period. The abstracts or full texts of docu-
ments extracted by the database searches were screened using
specific inclusion and exclusion criteria. The eligibility crite-
ria were used to ensure that the documents were relevant to the
research questions presented earlier, which are centred around
empirical studies on program comprehension.

The systematic review also included an analysis using the
full text of empirical studies that met the eligibility criteria. The
analysis consisted of identifying the year of the study and the
tasks used to stimulate the comprehension process, and sum-
marizing the methods used in the study and the findings. The
summaries were then used to create categories that reflected the
most prevalent methods and findings of the research included in
the present review. Categorizing the methods and findings as-
sisted us in answering the research questions presented earlier
by allowing us to make observations about how the research on
mental representations of programs has changed over time and
the resulting contributions.

3. Method

This section provides a description of the systematic litera-
ture review that was conducted in accordance with PRISMA
guidelines (Moher et al., 2009) and was supported using snow-
balling, where the reference list of data items are used to iden-
tify additional data items (Wohlin, 2014). The information
sources, search process, and screening process used in this lit-
erature review are outlined in this section.

3.1. Information Sources

Five databases were included in the search process: Com-
puter Source Index, ERIC, IEEE Xplore Digital Library,
PsycINFO, and Scopus. Records in the Computer Source In-
dex (formerly Computer Science Index) database are related to
the current trends and advances in computer science. The ERIC
database records are primarily related to the field of education,
with publication dates from 1966 to present. The IEEE Xplore
Digital Library database contains scientific and technical con-
tent published by the Institute of Electrical and Electronics En-
gineers (IEEE) and its publishing partners, from the fields of
electrical engineering, computer science, and electronics. The
publication dates range from 1872 to present. The records in the
PsycINFO database refer to literature from the behavioural sci-
ences and mental health fields of study, with publication dates
ranging from 1887 to present. The Scopus database contains
records from the sciences, health sciences, and social sciences,
with publication dates ranging from 1966 to present.

The keyword, title, and abstract information were used to
perform the database searches. The search string found in Ap-
pendix A was developed using the main components of the
search: mental representations, program comprehension, and
programmers. Synonyms of these components were then iden-
tified and all their combinations were searched according to the
requirements of the specific database. For example, the search

term for mental representation was comprised of the keyword
‘schema*’, and the keywords ‘cognit*’, ‘mental*’, ‘knowl-
edge’, ‘program*’, and ‘situation*’ combined with ‘model*’,
‘represent*’, ‘plan*’, ‘structur*’, ‘map*’, ‘chunk*’, and ‘slic*’
(the wildcard symbol * is used for identifying all words starting
with slic, e.g. slicing). The combined words could be at most
separated by two words. The search string for the IEEE Xplore
Digital Library had to be modified slightly since it was the only
database that imposed a limit on the number of wildcard sym-
bols and keywords. Because of the multidisciplinary nature of
the Scopus database, its search was limited by subject area to
psychology, computer science, and engineering. The date of the
last search of all databases was November 8, 2018. There were
no restrictions put on the publication dates or publication types
(e.g., theses, journal articles, conference papers, books) when
performing the database searches.

Landman et al. (2017) found that when using the IEEE
Xplore database the number of results were reduced when
adding an OR to their search queries. Given their concern re-
garding inconsistencies, multiple search queries were tested us-
ing the IEEE Xplore database. When additional OR statements
were added to the search query used in the current review, the
number of results increased as expected.

A request for unpublished work of relevance was sent to the
Psychology of Programming Interest Group (PPIG) discussion
group. As a results of this request, we received four unpub-
lished papers.

Internet search engines were not used as an information
source for the present review due to their unsystematic nature
and lack of quality control. Google and Google Scholar both
use personalization filters that affect the results that are returned
by searches (Pariser, 2011). The use of filters by search en-
gines creates unpredictable and inconsistent searches. The lack
of standardization could create bias since searches are filtered
based on what the search engine determines the user wants re-
sulting in an incomplete retrieval of data. Internet search en-
gines cannot exclude results that are from predatory publishers.

3.2. Search Strategy
The search results for each of the databases were as fol-

lows: Computer Source returned 65 records, ERIC returned
50 records, IEEE Xplore Digital Library returned 280 records,
PsycINFO returned 92 records, and Scopus returned 879
records. In total, 1,366 data items were retrieved through
database searches. There were 280 duplicate data items re-
moved, leaving 1,158 unique data items as indicated in Figure
1.

3.3. Eligibility Criteria
A preliminary screening was performed on the 1,158 unique

data items that were extracted from the five database searches.
The data items were screened by reading their titles and ab-
stracts. In cases where it was not evident if the criteria were
met from the abstract, then the full text was accessed and re-
viewed.

Data items had to be empirical studies to be considered for
inclusion during the preliminary screening. These studies also

3

Figure 1: PRISMA Flow Diagram.

had to have participants that were programmers, meaning that
they had prior knowledge of the programming language used
in the study. The study had to use coded programs or code
fragments that were written in a formal programming language.
The flow diagram outlining the results of each screening stage
is found in Figure 1. The exclusion criteria used in the pre-
liminary screening were such that programming aptitude stud-
ies, usability studies, and studies that involved the teaching and
learning of a programming language (e.g., teaching methods,
educational software) were excluded, reducing the data items
from 1,158 to 139 (see Figure 1). In cases where an author
republished their study using the same data and analysis, only
the most recent publication was kept. The full text of the docu-
ments were then analyzed to determine if they met the eligibil-
ity criteria and 50 documents were included as a result. From
the use of snowballing and the unpublished work received from
PPIG, 22 additional data items were included as indicated in
Figure 1.

The data items that remained after the preliminary screen-
ing were subject to further scrutiny by examining the goals and
methods of the studies. The elimination criteria for this stage
were structured with the goal to exclude studies on the prob-
lem solving process of programming, analytic and predictive
techniques for programmer performance, program design and
implementation, and debugging strategies and skills. However,
studies that used debugging as a task to stimulate the compre-
hension process in order to study programmers’ mental repre-
sentations were included. For example, the study conducted
by Stone et al. (1990) was eliminated because they investigated
the debugging skills of programmers and how these skills can
be improved. The study by Petre and Blackwell (1999) was ex-
cluded because they investigated the visual imagery produced
by programmers during the software design phase. Their study
did not include the writing or understanding of code. The study
by Kamma and Jalote (2013) was eliminated as it examined

programmer productivity. Another data item eliminated from
the review was a study conducted by Yeh (2014) that did not
involve programming or code and investigated the cognitive
processes used by participants when solving a software design
problem. The criteria for inclusion at this stage required that
studies had contributed to the understanding of program com-
prehension and mental representations.

As a result of the screening process, the data items included
in the present review are empirical studies of programmers that
investigated their comprehension and internal representation of
code written in a formal programming language. The eligibility
criteria used here are meant to extract studies with a focus on
knowledge representation as opposed to knowledge utilization
(Atwood and Ramsey, 1978).

4. Results

The data extracted from the 72 documents identified by the
systematic review are provided in Table B.1. The items in the
table are listed in chronological order to allow the reader to fol-
low the development of the literature.

4.1. Research Timeline

Empirical studies used to develop and validate theories on
program comprehension first started to emerge in the 1970’s
(Figure 2), with the earliest study found by the systematic re-
view conducted in 1976. The timeline depicted in Figure 2
shows the growth and subsequent decline in the number of em-
pirical studies that have been conducted on program compre-
hension. During the 1970’s and 1980’s, 20 studies were con-
ducted. The number of studies grew to 40 in the 1990’s when it
peaked. In more recent years the work in this area has dropped
off almost completely with only 12 studies conducted since
2000 (Figure 2). Throughout this timeline, various tasks have
been used to stimulate the comprehension process that results in
the formation of mental representations. When examining the
Task column in Table B.1, it appears that, in 24 of the studies,
more than one task was assigned to the participants. The most
commonly assigned task was to study a program; this task was
used in 51 of the studies. The remaining tasks were consider-
ably less used, these consisted of classifying, debugging, writ-
ing documentation, enhancing, hand execution, maintenance,
modification, recopying, reusing, and writing or reconstructing
code.

4.2. Research Methods

To determine how the methods used in the studies included in
the present review have changed over time, the method of each
study has been categorized in Table B.1 for analysis. Through
inspection of the Method column in Table B.1, it is apparent
that a variety of techniques and measures have been used, both
independently and in various combinations, to determine the
mental representations formed by participants during the com-
prehension process. The most common technique was the use
of comprehension questions (25 studies). Comprehension ques-
tions were also frequently used in addition to other measures

4

Figure 2: Frequency of empirical studies on program comprehension.

to determine the mental representations formed by participants.
Each study developed its own set of comprehension questions
in order to measure the strength of different mental representa-
tions that may have been formed by the participants. Although
some studies tested for the same types of representations (pro-
gram and domain models studied by Pennington (1987b), Cor-
ritore and Wiedenbeck (1991, 1999), Burkhardt et al. (1997),
Burkhardt et al. (2002), Wiedenbeck and Ramalingam (1999),
Wiedenbeck et al. (1999), Mosemann and Wiedenbeck (2001))
or knowledge structures (i.e., data flow, control flow, state, and
function studied by Pennington (1987b), Teasley (1994), Shaft
and Vessey (1995), Snyder (1995), Ramalingam and Wieden-
beck (1997), Khazaei and Jackson (2002)) the questions used
varied between these studies. The use of verbal protocol analy-
sis while participants performed a task and recall of code were
also common techniques for measuring program comprehen-
sion (23 and 19 studies respectively). Recognition of code was
used in nine studies, summarizing or describing the function of
the code was used in five studies, and fill in the blank and sort-
ing were each used three times, whereas all other techniques
were each used only once. The recall of code required partic-
ipants to reproduce the program used in the study either ver-
batim or a functionally equivalent version. The recognition of
code required participants to determine if a given code fragment
was from the program used in the study.

Comprehension questions form the method that has been
used most consistently throughout the timeline of the present
review, whereas other techniques have been introduced and in
some cases, discontinued at different points along the timeline
(Figure 2). The use of methods depicted in Figure 2 shows that
recall was used more frequently in earlier studies but dropped
off around the time that verbal protocol analysis was introduced.
The use of verbal protocol analysis first appeared in a study
by Letovsky (1987) and was popular until it was last used by
Vans et al. (1999) and did not reappear until a study by Nosál

and Porubän (2015) (Figure 3). Some of the more recent stud-
ies in the present review have introduced novel techniques for
analyzing mental representations formed by programmers such
as software that performed screen capture of their actions and
monitoring of documents they accessed (Corritore and Wieden-
beck, 2001) and analysis of eye movement data (Fan, 2010).

Figure 3: Frequency of most common methods used for determining the mental
representations formed during the comprehension process.

The data collected in the present review and found in the
Method column of Table B.1 indicate that the types of program-
mers compared in the studies have changed over time. From
the first study in 1976 until 1990, the only types of program-
mers that were compared in the studies included in the present
review were programmers of varying levels of expertise (Shnei-
derman, 1976; Adelson, 1981; McKeithen et al., 1981; Ehrlich
and Soloway, 1984; Soloway and Ehrlich, 1984; Adelson, 1984;
Barfield, 1986; Schmidt, 1986; Bateson et al., 1987; Boehm-
Davis et al., 1987; Vessey, 1987; Vihmalo and Vihmalo, 1988;
Davies, 1990b; Guerin and Matthews, 1990). Programmers
were categorized as expert, intermediate, or novice to indicate
their expertise in the programming language used in the study
or their expertise in the domain relevant to the program. These
studies used different definitions and measures to categorize
participants’ level of expertise. The first occurrence in the data
of comparing mental representations formed by programmers
trained in different programming paradigms or languages was
in 1990. Since that time, comparing programmers with differ-
ent backgrounds has become a more common type of compar-
ison having been used in studies conducted by Robertson and
Yu (1990), Green and Navarro (1995), Corritore and Wieden-
beck (1999), Wiedenbeck and Ramalingam (1999), Wieden-
beck et al. (1999), Corritore and Wiedenbeck (2001), Navarro-
Prieto and Cañas (2001), and Khazaei and Jackson (2002). The
most common comparison of programming paradigms was be-
tween procedural programming and object oriented program-
ming.

5

4.3. Research Contributions
To analyze the contributions that have resulted from the re-

search included in the present review, the findings of each
study have been categorized in Table B.1. Examination of the
Findings column in Table B.1 reveals considerable variation in
the description of the representations formed by programmers
and the strategies used during the program comprehension pro-
cess. The studies conducted by Shneiderman (1976), McKei-
then et al. (1981), Ehrlich and Soloway (1984), Mynatt (1984),
Barfield (1986, 1997), Guerin and Matthews (1990), Furman
(1998), and Fan (2010) found that programmers used chunk-
ing to develop a mental representation of the code. Chunking
involves the grouping of lines of code together during the com-
prehension process. The strategy used by programmers when
chunking differed between studies. Guerin and Matthews found
that programmers chunked by identifying functions in the code;
Barfield concluded that programmers grouped sequential lines
of code that fit logically together; Furman found that program-
mers used the visual structure of the code to form chunks; and
Fan determined that programmers used beacons to recognize
code chunks.

Another group of studies included in the present review
found that programmers formed mental representations at vary-
ing levels of abstraction. Studies performed by Penning-
ton (1987b), Bergantz and Hassell (1991), Burkhardt et al.
(1997), Burkhardt et al. (2002), Ramalingam and Wieden-
beck (1997), Corritore and Wiedenbeck (1999), Wiedenbeck
and Ramalingam (1999), Wiedenbeck et al. (1999), Mosemann
and Wiedenbeck (2001), and Parkin (2004) support the two
model theory that programmers form low level program mod-
els and high level situation or domain models during the com-
prehension process. Studies conducted by von Mayrhauser
and Vans (1993, 1994, 1995, 1996, 1998), Vans (1996), von
Mayrhauser et al. (1997), and Vans et al. (1999) found that pro-
grammers formed mental models at three levels of abstraction
and switched between them during the comprehension process,
with the program model as the lowest level, the situation model
as the intermediate level, and the domain model as the highest
level of abstraction.

The knowledge structures and representations that compose
the representations at different levels of abstraction were also
investigated by a number of studies. Pennington (1987b) found
that mental models were developed by programmers using a
bottom-up approach (concrete to abstract) since control flow
representations were used initially in the comprehension pro-
cess to form program models whereas data flow and functional
representations were used later to form situation models. Shaft
and Vessey (1995) determined that the direction in which the
representations were developed depended on the expertise of
the programmer in the application domain; in an unfamiliar
domain programmers developed representations in a bottom-
up direction (data flow, control flow, state, and function), but
in familiar domains programmers developed representations in
the opposite direction (top-down). Contrary to Pennington’s
findings, Bergantz and Hassell (1991) concluded that control
flow representations did not influence the comprehension pro-
cess and that the representations used by programmers dif-

fered depending on their level of expertise: less experienced
programmers developed more data flow relationships whereas
more experienced programmers developed more function rela-
tionships in their mental representations. Teasley (1994) con-
cluded that different types of knowledge structures are all ac-
quired at a similar rate and there was no strong evidence to in-
dicate that programmers use a bottom-up approach. Navarro-
Prieto and Cañas (2001) compared programmers with back-
grounds in different programming paradigms and found that
procedural programmers had better developed control flow rep-
resentations than data flow representations whereas visual pro-
grammers developed both representations equally well. Khaz-
aei and Jackson (2002) compared the representations formed by
programmers who had experience in both event driven and ob-
ject oriented paradigms when understanding programs written
in the different paradigms and found that programmers formed
stronger control flow, data flow, and functional models when
understanding event driven programs compared to object ori-
ented programs. Snyder (1995) determined that the representa-
tions formed by programmers were dependent on the task they
were assigned, and that modification tasks required the pro-
grammer to develop relationships between four representations:
data flow, control flow, state, and function.

Contributions made by research on mental representations
formed by programmers during program comprehension have
been important in the development of tools and languages that
are more intuitive and align with programmers’ internal rep-
resentations. The lack of research on mental representations
of parallel programmers reinforces the need to return to this
research approach to develop tools and languages for parallel
programmers instead of relying on usability and comparative
studies. Research that analyses the usability of tools and lan-
guages and comparative studies is not informed by theories of
program comprehension or mental representations of program-
mers and is unable to provide insight into how programmers
internalize and represent code.

5. Discussion

The purpose of the present study was to determine the ex-
tent of empirical research that examined mental representations
formed during program comprehension to date, how the meth-
ods used in the research have changed over time, and the con-
tributions that have resulted from the research.

To determine the extent of empirical research that has ex-
amined mental representations formed during program compre-
hension to date, a systematic review was performed and sum-
marized in Table B.1. The timeline (Figure 2) that resulted from
the systematic review indicates that recently there has been a
dramatic decline in research on program comprehension. The
declining number of studies focusing on program comprehen-
sion and mental representations of programmers in recent years
is possibly due to a change in focus. For example, there were a
number of studies conducted in recent years that focused on
strategies and tools for teaching programming (Oliveira Au-
reliano, 2013; Dillon, 2013; Lane, 2005), learning second or
subsequent programming languages (Scholtz and Wiedenbeck,

6

1990), and designing programs (Yeh, 2014; Basili and Reiter,
1981) that did not meet the criteria for the present review. For
example, Whalley and Kasto (2014) conducted a study that ex-
amined the progression of learning and the development of cog-
nitive structures during the learning process. Another study that
was eliminated measured the amount of programmer effort re-
quired to write programs using different parallel programming
models (Hochstein et al., 2008). Cañas and Antolı́ (1998) stated
that research of mental representations was blocked due to lack
of agreement in definition and methodology. The results of
the current study found in Table B.1 support this conjecture
by demonstrating the lack of agreement on the tasks used to
elicit the mental representations and the methodology utilized
to measure them. Other reasons for the observed decline may
include a movement towards usability and comparative studies
where there may be more funding particularly from companies
wanting to demonstrate the usability of their programming lan-
guages and tools. Usability and comparative studies tend to
have more concrete measures such as lines of code, runtime,
and memory usage that allow a quantitative analysis of the pro-
gram features providing more conclusive results.

By examining the Task and Method columns in Table B.1, we
were able to determine how the studies included in the present
review have changed over time. For a period of time, empiri-
cal studies on program comprehension and mental representa-
tions were performed on varying levels of programmers using
a variety of programming languages. The tasks and methods
used to assess and analyze program comprehension and mental
representations of the participants were not consistent between
studies. While Vessey (1987) criticized the use of debugging as
a task to stimulate program comprehension, it has been used in
studies throughout the timeline of the present review by Weiser
(1981), Weiser and Ledgard (1982), Adelson (1984), Gilmore
and Green (1988), Davies (1990a), Romero and Du Boulay
(2004), and Fan (2010). The research performed by Wieden-
beck et al. (1993) compared expert and novice programmers
who were given the task of studying code for understanding and
found that studying code was an unnatural task for the experts
who commented that normally they would have a concrete ob-
jective, such as debugging or predicting the effects of modifica-
tions, in mind when reading code. Wiedenbeck speculated that
depending on the task, different information may be extracted
during program comprehension. Wiedenbeck’s observation un-
derlines the importance of ensuring the task is appropriate for
the participants in the study. In some cases researchers also ex-
pressed concerns over the validity of methods used to measure
comprehension including comprehension questions (Shaft and
Vessey, 1995) and recall (Guerin and Matthews, 1990) that are
used in a number of other studies. The focus of the research
has also shifted over time. Comparing expert and novice pro-
grammers was the focus early on in the research, although no
common definition or measure of expertise was used in these
studies. The focus has now shifted to comparing programmers
with backgrounds in different programming paradigms and lan-
guages.

The contributions that resulted from the empirical research
on program comprehension have been summarized in the Find-

ings column of Table B.1. Although there are some researchers
who build on their own work in an incremental fashion (Vessey,
1987) or use aspects of other studies as a model (Guerin and
Matthews, 1990), this building process is limited and often de-
viates from the previous work in such a way that it is hard to
connect the findings. Even studies that attempt to support the
findings of other studies end up with inconclusive (Corritore
and Wiedenbeck, 1999) or even contradictory results (Wieden-
beck and Ramalingam, 1999).

Another finding that emerged from the systematic review was
that despite the widespread use of expert and novice as cate-
gories to describe programmers, no common definition or mea-
sure of expertise has been developed or adopted. Even studies
that did not compare expert and novice programmers often used
these categories to identify the group of programmers that were
used as participants. There was also no consistency between
the use of expert and experienced when describing program-
mers and these terms were often used interchangeably in the
same study (Barfield, 1986; Vessey, 1987; Fix et al., 1993).

The present review contains empirical studies that have been
used to build a timeline to provide insight as to how the re-
search on program comprehension and mental representations
has evolved. The collection of knowledge contained in the
present review would be of interest to researchers who want to
build on the work done by others in this field and those who
want to expand this work to include new programming lan-
guages and paradigms. The present review demonstrates that
the field of program comprehension is lacking incremental re-
search that builds on previous work, and as a result, the re-
search in this area has been scattered. The present review also
points to gaps in the research on program comprehension. In
recent years, the work in this field has declined dramatically
and as a result, newly developed or popularized languages and
paradigms have not been a part of the research reviewed here.
In particular, parallel programming has been neglected in pro-
gram comprehension research and consequently has developed
using mostly informal approaches (Mattson and Wrinn, 2008).
Because of the considerable differences between parallel pro-
gramming and the programming examined in the studies in the
present review, it is impossible to determine whether the find-
ings summarized in Table B.1 would resemble the comprehen-
sion process and mental representations formed by parallel pro-
grammers. Therefore, future work should focus on empirical
research designed to analyze the mental representations formed
by expert parallel programmers during program comprehension
in order to inform the development of tools and languages that
support parallel programmers.

6. Future Work

The decline in research on mental representations is not an
indication that this topic lacks relevance or importance, but an
indication of a shift in focus. Research topics that have gained
more interest include usability and comparative studies which
allow tools and languages to be compared and ranked as more
or less superior without the risk of finding that the tool or lan-
guage does not coincide with the mental representation of the

7

user. Ericsson et al. (2006) found that there has also been more
focus on organizational settings where programmers work in
teams (Gren et al., 2017; Teh et al., 2012; Dingsøyr and Dybå,
2012). The study of programming teams would be attractive to
software companies as they may anticipate a more immediate
return on their investment into this area of research. However,
the use of mental model theory to design programming tools
and languages has demonstrated measurable benefits. For ex-
ample, Sulı́r (2015) studied mental model overlapping to de-
velop source code annotations that allow programmers to share
their mental models. From their study they found that the anno-
tations improved program comprehension and reduced mainte-
nance time. The program slicing tool developed by Korel and
Rilling (1998) that assists with program comprehension was de-
veloped based on research that demonstrated the use of program
slicing improves the process of program understanding. In our
view, the current trend in which the usability of languages is
assessed after they have already been in use is counterproduc-
tive as it ignores cognitive processes involved in programming.
Accordingly, we argue that there needs to be a resurgence of
empirical research on the psychology of programming to in-
form the design of tools and languages, especially in new and
emerging programming paradigms.

The study of expert mental representations is important for
informing the development of programming languages, instruc-
tional practices, and tools. To perform research on expert pro-
grammers it is necessary to be able to determine if participants
are in fact experts. There has been a lack of agreement among
researchers on how expertise should be measured. Siegmund
et al. (2014) found that programmer experience can be deter-
mined by measuring their self estimation of their experience
level compared to their peers and their experience level with
logical programming. The study conducted by Baltes and Diehl
(2018) found that self-assessment of expertise by programmers
was not consistent between programmers with different pro-
gramming language backgrounds and that years of experience
was not related to expertise. The position taken by Parnin et al.
(2017) is that expertise cannot be measured using superficial
measures such as years of experience but instead using multi-
ple measures such as observing the brain activity of program-
mers during program comprehension and assessing program-
ming knowledge using concept inventories. To date there re-
mains no standard for measuring programmer expertise so there
is a need for more research to develop a standard measure for
categorizing programmers based on their expertise. The dis-
tinction between expert and experienced also needs to be es-
tablished. Experience is a measure of time spent working in a
particular field or performing a task, however, it does not nec-
essarily translate into expertise, which is a measure of perfor-
mance (Ericsson et al., 2006). One recommendation for future
work is to develop a tool for assessing programmer expertise
that is not solely reliant on experience as a gauge.

Empirical research on mental representations formed by pro-
grammers during program comprehension has been predomi-
nately conducted using sequential code. Studies involving par-
allel programmers are most often concerned with productivity
(Hochstein et al., 2005; Ebcioglu et al., 2006). However, the

mental representations formed by expert parallel programmers
during the comprehension of parallel programs is an impor-
tant area of study in order to determine how their representa-
tions differ from the representations developed during sequen-
tial source code comprehension. The comprehension of parallel
code requires programmers to mentally execute multiple time-
lines that are occurring in parallel at the machine level. There-
fore, parallel program comprehension may require additional
dimensions to construct a mental representation. To explore
this research question, program comprehension studies need to
be conducted using parallel programmers as participants and
assign tasks that stimulate the comprehension process at a level
that requires programmers to understand how the code executes
in parallel. Possible tasks include identifying the presence of
race conditions, rating efficiency or increasing efficiency of par-
allel programs.

The present literature review suggests that there is no con-
sensus on the method that provides the most accurate account
of the mental representations formed by programmers during
the comprehension process. In addition, the different methods
that have been used only provide an indirect analysis of these
mental representations. The present review contains only one
study, conducted by Fan (2010), that used eye tracking. Fan
used eye tracking data to determine how the program compre-
hension process is affected by beacons, comments, and task
motivation. This author concluded that eye tracking data can
be used for tracing and analyzing the program comprehension
process.

Work in psychology of programming has been moving to-
wards the use of electroencephalography (EEG) to investigate
models of cognition in recent years. For example, Crk et al.
(2016) used EEG to determine programmer expertise. How-
ever, models of cognition are not the same as the mental rep-
resentations that are of interest in the present review. In future
work it is recommended that eye tracking be used in conjunc-
tion with direct questioning to formulate a model of the mental
representations formed by programmers during program com-
prehension.

Acknowledgments

I would like to thank Richelle Witherspoon, Information Ser-
vices Librarian at the University of New Brunswick for her as-
sistance in formulating the search terms and guidance in exe-
cuting the database searches.

Appendix A. Search String

The following search string was used for database keyword
searches of Computer Source, ERIC, and PsycINFO. Mod-
ifications were made to this search string to fit the specific
requirements for IEEE Xplore Digital Library and Scopus.

(((code OR program* OR software)N2(understanding OR
comprehen* OR stud* OR analy* OR maint* OR modif* OR
recall* OR sort* OR categor* OR debug* OR classif* OR

8

copy)) AND (((cognit* OR mental* OR knowledge OR
program* OR situation*)N2(model* OR represent* OR plan*
OR structur* OR map* OR chunk* OR slic*)) OR schema*))
AND (programmer* OR coder*)

9

Appendix B. Summary of Literature

Table B.1: Summary of literature included in systematic review. Filled
circles indicate that the feature applied and empty circles indicate that
it did not apply. An extended table can be found at: http://www.cs.
unb.ca/~lbidlak1/ExtendedOnlineAppendix.pdf

Author Task Method Findings

C
la

ss
if

y

D
eb

ug

D
oc

um
en

ta
tio

n

E
nh

an
ce

m
en

t

H
an

d
E

xe
cu

tio
n

M
ai

nt
en

an
ce

M
od

ifi
ca

tio
n

R
ec

op
y

R
eu

se

St
ud

y

W
ri

te
or

R
ec

on
st

ru
ct

C
od

e

C
om

pr
eh

en
si

on
Q

ue
st

io
ns

R
ec

al
l

R
ec

og
ni

tio
n

V
er

ba
lP

ro
to

co
l

O
th

er

C
hu

nk
in

g
an

d
Sl

ic
in

g

M
en

ta
lM

od
el

T
he

or
y

(m
ul

til
ev

el
)

To
p

D
ow

n
vs

.B
ot

to
m

U
p

O
th

er

Shneiderman (1976) ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦

Adelson (1981) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ •

McKeithen et al. (1981) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦

Weiser (1981) ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦

Weiser and Ledgard (1982) ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦

Adelson (1984) ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Mynatt (1984) ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦

Ehrlich and Soloway (1984) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦

Soloway and Ehrlich (1984) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ •

Barfield (1986) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦

Schmidt (1986) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • • • ◦ ◦ ◦ ◦ ◦ •

Bateson et al. (1987) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ • ◦ ◦ ◦ •

Boehm-Davis et al. (1987) ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ •

Letovsky (1987) ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦

Littman et al. (1987) ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

Pennington (1987b) ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦

Vessey (1987) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ •

Détienne (1988) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦

Gilmore and Green (1988) ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Vihmalo and Vihmalo (1988) ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ • • ◦ ◦ ◦ •

Davies (1990b) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Davies (1990a) ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ •

10

Continuation of Table B.1
Author Task Method Findings

C
la

ss
if

y

D
eb

ug

D
oc

um
en

ta
tio

n

E
nh

an
ce

m
en

t

H
an

d
E

xe
cu

tio
n

M
ai

nt
en

an
ce

M
od

ifi
ca

tio
n

R
ec

op
y

R
eu

se

St
ud

y

W
ri

te
or

R
ec

on
st

ru
ct

C
od

e

C
om

pr
eh

en
si

on
Q

ue
st

io
ns

R
ec

al
l

R
ec

og
ni

tio
n

V
er

ba
lP

ro
to

co
l

O
th

er

C
hu

nk
in

g
an

d
Sl

ic
in

g

M
en

ta
lM

od
el

T
he

or
y

(m
ul

til
ev

el
)

To
p

D
ow

n
vs

.B
ot

to
m

U
p

O
th

er

Détienne and Soloway (1990) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ •

Guerin and Matthews (1990) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦

Robertson and Yu (1990) • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Bergantz and Hassell (1991) ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦

Corritore and Wiedenbeck (1991) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦ • ◦

Koenemann and Robertson (1991) ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦

Koubek and Salvendy (1991) ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

Wiedenbeck (1991) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ •

Boehm-Davis et al. (1992) ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ •

Fix et al. (1993) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

von Mayrhauser and Vans (1993) ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦

Wiedenbeck et al. (1993) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Davies (1994) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •

Teasley (1994) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦

von Mayrhauser and Vans (1994) ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦

Burkhardt and Détienne ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦

Davies et al. (1995) • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Green and Navarro (1995) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ •

Schömann (1995) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • • • ◦ • ◦ ◦ • ◦

Shaft and Vessey (1995) ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦

Snyder (1995) ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ •

von Mayrhauser and Vans (1995) ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦

Vans (1996) ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦

von Mayrhauser and Vans (1996) ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦

Ye and Salvendy (1996) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦

Barfield (1997) ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦

Burkhardt et al. (1997) ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦

Ramalingam and Wiedenbeck (1997) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦

11

Continuation of Table B.1
Author Task Method Findings

C
la

ss
if

y

D
eb

ug

D
oc

um
en

ta
tio

n

E
nh

an
ce

m
en

t

H
an

d
E

xe
cu

tio
n

M
ai

nt
en

an
ce

M
od

ifi
ca

tio
n

R
ec

op
y

R
eu

se

St
ud

y

W
ri

te
or

R
ec

on
st

ru
ct

C
od

e

C
om

pr
eh

en
si

on
Q

ue
st

io
ns

R
ec

al
l

R
ec

og
ni

tio
n

V
er

ba
lP

ro
to

co
l

O
th

er

C
hu

nk
in

g
an

d
Sl

ic
in

g

M
en

ta
lM

od
el

T
he

or
y

(m
ul

til
ev

el
)

To
p

D
ow

n
vs

.B
ot

to
m

U
p

O
th

er

von Mayrhauser et al. (1997) ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦

Burkhardt et al. (1998) ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦

Furman (1998) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • • ◦ ◦ ◦

Shaft and Vessey (1998) ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦

von Mayrhauser and Vans (1998) ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦

Wong et al. (1998) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •

Corritore and Wiedenbeck (1999) ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦

Vans et al. (1999) ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦

Wiedenbeck and Ramalingam (1999) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦

Wiedenbeck et al. (1999) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦

Corritore and Wiedenbeck (2001) ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦

Mosemann and Wiedenbeck (2001) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦

Navarro-Prieto and Cañas (2001) ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ •

Romero (2001) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • • • ◦ ◦ ◦ ◦ ◦ •

Burkhardt et al. (2002) ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦

Khazaei and Jackson (2002) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Parkin (2004) ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦

Romero and Du Boulay (2004) ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Sajaniemi and Prieto (2005) • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Fan (2010) ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦

Alardawi and Agil (2015) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Nosál and Porubän (2015) ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ •

End of Table

12

References

Adelson, B., 1981. Problem solving and the development of abstract categories
in programming languages. Memory & Cognition 9, 422–433. doi:10.
3758/BF03197568.

Adelson, B., 1984. When novices surpass experts: The difficulty of a task may
increase with expertise. Journal of Experimental Psychology: Learning,
Memory, and Cognition 10, 483–495. doi:10.1037/0278-7393.10.3.
483.

Alardawi, A., Agil, A., 2015. Novice comprehension of object-oriented oo pro-
grams: An empirical study, in: 2015 World Congress on Information Tech-
nology and Computer Applications (WCITCA), pp. 1–4. doi:10.1109/
WCITCA.2015.7367057.

Arab, M., 1992. Enhancing program comprehension: Formatting and doc-
umenting. ACM SIGPLAN Notices 27, 37–46. doi:10.1145/130973.
130975.

Atwood, M.E., Ramsey, H.R., 1978. Cognitive structures in the comprehension
and memory of computer programs: An investigation of computer program
debugging. Technical Report. SCIENCE APPLICATIONS INC ENGLE-
WOOD CO.

Baltes, S., Diehl, S., 2018. Towards a theory of software development ex-
pertise, in: Proceedings of the 2018 26th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ACM, New York, NY, USA. pp. 187–200.
doi:10.1145/3236024.3236061.

Barfield, W., 1986. Expertnovice differences for software: Implications for
problem-solving and knowledge acquisition. Behaviour & Information
Technology 5, 15–29. doi:10.1080/01449298608914495.

Barfield, W., 1997. Skilled performance on software as a function of domain
expertise and program organization. Perceptual and Motor Skills 85, 1471–
1480. doi:10.2466/pms.1997.85.3f.1471.

Basili, V.R., Reiter, R.W., 1981. A controlled experiment quantitatively com-
paring software development approaches. IEEE Transactions on Software
Engineering 7, 299–320. doi:10.1109/TSE.1981.230841.

Bateson, A.G., Alexander, R.A., Murphy, M.D., 1987. Cognitive process-
ing differences between novice and expert computer programmers. In-
ternational Journal of Man-Machine Studies 26, 649–660. doi:10.1016/
S0020-7373(87)80058-5.

Bergantz, D., Hassell, J., 1991. Information relationships in prolog programs:
How do programmers comprehend functionality?. International Journal
of Man-Machine Studies 35, 313–328. doi:10.1016/S0020-7373(05)
80131-2.

Boehm-Davis, D.A., Holt, R.W., Schultz, A.C., 1987. Development and use of
cognitive representations of software in a modification task., in: Proceedings
of the 1987 IEEE International Conference on Systems, Man and Cybernet-
ics, pp. 990–994.

Boehm-Davis, D.A., Holt, R.W., Schultz, A.C., 1992. The role of program
structure in software maintenance. International Journal of Man-Machine
Studies 36, 21–63. doi:10.1016/0020-7373(92)90051-L.

Boshernitsan, M., Graham, S.L., Hearst, M.A., 2007. Aligning development
tools with the way programmers think about code changes, in: Proceedings
of the SIGCHI conference on Human factors in computing systems, ACM.
pp. 567–576. doi:10.1145/1240624.1240715.

Budgen, D., Brereton, P., 2006. Performing systematic literature reviews in
software engineering, in: Proceedings of the 28th International Conference
on Software Engineering, ACM. pp. 1051–1052. doi:10.1145/1134285.
1134500.

Burkhardt, J., Détienne, F., Wiedenbeck, S., 1998. The effect of object-oriented
programming expertise in several dimensions of comprehension strategies,
in: Proceedings. 6th International Workshop on Program Comprehension.
IWPC98 (Cat. No.98TB100242), pp. 82–89. doi:10.1109/WPC.1998.
693294.

Burkhardt, J.M., Détienne, F., . An empirical study of software reuse by ex-
perts in object-oriented design, in: HumanComputer Interaction: Interact
95. Springer US. IFIP Advances in Information and Communication Tech-
nology, pp. 133–138. doi:10.1007/978-1-5041-2896-4_22.

Burkhardt, J.M., Détienne, F., Wiedenbeck, S., 1997. Mental representations
constructed by experts and novices in object-oriented program comprehen-
sion, in: Human-Computer Interaction INTERACT 97, Springer US. pp.
339–346. doi:10.1007/978-0-387-35175-9_55.

Burkhardt, J.M., Détienne, F., Wiedenbeck, S., 2002. Object-oriented program

comprehension: Effect of expertise, task and phase. Empirical Software
Engineering 7, 115–156. doi:10.1023/A:1015297914742.

Cañas, J.J., Antolı́, A., 1998. The role of working memory in measuring men-
tal models, in: Proceedings of the Ninth European Conference on Cognitive
Ergonomics–Cognition and Cooperation. European Association of Cogni-
tive Ergonomics (EACE): Rocquencourt, France.

Chamberlain, B.L., Deitz, S.J., Snyder, L., 2000. A comparative study of the
NAS MG benchmark across parallel languages and architectures, in: Su-
percomputing, ACM/IEEE 2000 Conference, pp. 46–46. doi:10.1109/SC.
2000.10006.

Corritore, C., Wiedenbeck, S., 1991. What do novices learn during program
comprehension? International Journal of Human-Computer Interaction 3,
199–222. doi:10.1080/10447319109526004.

Corritore, C.L., Wiedenbeck, S., 1999. Mental representations of expert proce-
dural and object-oriented programmers in a software maintenance task. In-
ternational Journal of Human-Computer Studies 50, 61–83. doi:10.1006/
ijhc.1998.0236.

Corritore, C.L., Wiedenbeck, S., 2001. An exploratory study of program com-
prehension strategies of procedural and object-oriented programmers. In-
ternational Journal of Human-Computer Studies 54, 1–23. doi:10.1006/
ijhc.2000.0423.

Crk, I., Kluthe, T., Stefik, A., 2016. Understanding programming expertise:
An empirical study of phasic brain wave changes. ACM Transactions on
Computer-Human Interaction 23, 1–29. doi:10.1145/2829945.

Davies, S., 1990a. The nature and development of programming plans. In-
ternational Journal of Man-Machine Studies 32, 461–481. doi:10.1016/
S0020-7373(05)80143-9.

Davies, S.P., 1990b. Plans, goals and selection rules in comprehension of
computer programs. Behaviour & Information Technology 9, 201–214.
doi:10.1080/01449299008924237.

Davies, S.P., 1994. Knowledge restructuring and the acquisition of program-
ming expertise. International Journal of Human-Computer Studies 40, 703–
726. doi:10.1006/ijhc.1994.1032.

Davies, S.P., Gilmore, D.J., Green, T.R.G., 1995. Are objects that im-
portant? Effects of expertise and familiarity on classification of object-
oriented code. Human-Computer Interaction 10, 227–248. doi:10.1207/
s15327051hci1002\&3_3.

Détienne, F., 1988. Une application de la théorie des schémas à la
compréhension de programmes. = Applying schema theory to program un-
derstanding. Le Travail Humain: A Bilingual and Multi-Disciplinary Jour-
nal in Human Factors 51, 335–350.

Détienne, F., 2001. Software Design-Cognitive Aspect. Springer Science &
Business Media.

Détienne, F., Soloway, E., 1990. An empirically-derived control structure
for the process of program understanding. International Journal of Man-
Machine Studies 33, 323–342. doi:10.1016/S0020-7373(05)80122-1.

Dillon, E.C.J., 2013. Measuring the effects of low assistive vs. moderately
assistive environments on novice programmers. Ph.D. thesis. ProQuest In-
formation & Learning.

Dingsøyr, T., Dybå, T., 2012. Team effectiveness in software development:
Human and cooperative aspects in team effectiveness models and priorities
for future studies, in: 2012 5th International Workshop on Co-operative and
Human Aspects of Software Engineering (CHASE), pp. 27–29. doi:10.
1109/CHASE.2012.6223016.

Ebcioglu, K., Sarkar, V., El-Ghazawi, T., Urbanic, J., Center, P.S., 2006. An
experiment in measuring the productivity of three parallel programming lan-
guages, in: Proceedings of the Third Workshop on Productivity and Perfor-
mance in High-End Computing, pp. 30–36.

Ehrlich, K., Soloway, E., 1984. An empirical investigation of the tacit plan
knowledge in programming, in: Human factors in computer systems, pp.
113–134.

Ericsson, K., Charness, N.E., Feltovich, P.J., Hoffman, R.R., 2006. The
Cambridge Handbook of Expertise and Expert Performance. Cambridge
Handbooks in Psychology, Cambridge University Press. doi:10.1017/
CBO9780511816796.

Fan, Q., 2010. The effects of beacons, comments, and tasks on program com-
prehension process in software maintenance. Ph.D. thesis.

Feo, J.T., 2015. A Comparative Study of Parallel Programming Languages:
the Salishan Problems. Special Topics in Supercomputing, v. 6, Elsevier
Science.

Fix, V., Wiedenbeck, S., Scholtz, J., 1993. Mental representations of programs

13

by novices and experts, in: Conference on Human Factors in Computing
Systems - Proceedings, pp. 74–79.

Furman, S.M., 1998. Improving software comprehension. Ph.D. thesis. Pro-
Quest Information & Learning.

Gilmore, D.J., Green, T.R., 1988. Programming plans and programming exper-
tise. The Quarterly Journal of Experimental Psychology A: Human Experi-
mental Psychology 40, 423–442. doi:10.1080/02724988843000005.

Green, T.R.G., 1989. Cognitive dimensions of notations, in: Proceedings of the
Fifth Conference of the British Computer Society, Human-Computer Inter-
action Specialist Group on People and Computers V, Cambridge University
Press, New York, NY, USA. pp. 443–460.

Green, T.R.G., Navarro, R., 1995. Programming plans, imagery, and visual
programming, in: HumanComputer Interaction: Interact 95. Springer US.
IFIP Advances in Information and Communication Technology, pp. 139–
144. doi:10.1007/978-1-5041-2896-4_23.

Gren, L., Torkar, R., Feldt, R., 2017. Group development and group matu-
rity when building agile teams: A qualitative and quantitative investigation
at eight large companies. Journal of Systems and Software 124, 104–119.
doi:10.1016/j.jss.2016.11.024.

Guerin, B., Matthews, A., 1990. The effects of semantic complexity on expert
and novice computer program recall and comprehension. Journal of General
Psychology 117, 379–389. doi:10.1080/00221309.1990.9921144.

Hochstein, L., Basili, V.R., Vishkin, U., Gilbert, J., 2008. A pilot study to
compare programming effort for two parallel programming models. Journal
of Systems & Software 81, 1920–1930. doi:10.1016/j.jss.2007.12.
798.

Hochstein, L., Carver, J., Shull, F., Asgari, S., Basili, V., Hollingsworth, J.K.,
Zelkowitz, M.V., 2005. Parallel programmer productivity: A case study of
novice parallel programmers, in: Supercomputing, 2005. Proceedings of the
ACM/IEEE SC 2005 Conference, pp. 35–35. doi:10.1109/SC.2005.53.

Hornbæk, K., 2006. Current practice in measuring usability: Challenges to
usability studies and research. International Journal of Human-Computer
Studies 64, 79–102. doi:https://doi.org/10.1016/j.ijhcs.2005.
06.002.

Kamma, D., Jalote, P., 2013. Effect of task processes on programmer produc-
tivity in model-based testing, in: Proceedings of the 6th India software en-
gineering conference, ACM. pp. 23–28. doi:10.1145/2442754.2442758.

Khazaei, B., Jackson, M., 2002. Is there any difference in novice compre-
hension of a small program written in the event-driven and object-oriented
styles?, in: Proceedings - IEEE 2002 Symposia on Human Centric Comput-
ing Languages and Environments, HCC 2002, pp. 19–26.

Koenemann, J., Robertson, S.P., 1991. Expert problem solving strategies for
program comprehension, in: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ACM. pp. 125–130. doi:10.1145/
108844.108863.

Korel, B., Rilling, J., 1998. Program slicing in understanding of large programs,
in: Proceedings. 6th International Workshop on Program Comprehension.
IWPC98 (Cat. No.98TB100242), pp. 145–152. doi:10.1109/WPC.1998.
693339.

Koubek, R.J., Salvendy, G., 1991. Cognitive performance of super-experts on
computer program modification tasks. Ergonomics 34, 1095–1112. doi:10.
1080/00140139108964849.

Landman, D., Serebrenik, A., Vinju, J.J., 2017. Challenges for static analysis
of java reflection-literature review and empirical study, in: 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE), IEEE. pp.
507–518.

Lane, H.C., 2005. Natural language tutoring and the novice programmer. Ph.D.
thesis. ProQuest Information & Learning.

Letovsky, S., 1987. Cognitive processes in program comprehension. The Jour-
nal of Systems and Software 7, 325–339. doi:10.1016/0164-1212(87)
90032-X.

Littman, D., Pinto, J., Letovsky, S., Soloway, E., 1987. Mental models and
software maintenance. The Journal of Systems and Software 7, 341–355.
doi:10.1016/0164-1212(87)90033-1.

Mattson, T., Wrinn, M., 2008. Parallel programming: Can we please get it right
this time?, in: Proceedings of the 45th Annual Design Automation Con-
ference, ACM, New York, NY, USA. pp. 7–11. doi:10.1145/1391469.
1391474.

von Mayrhauser, A., Vans, A., 1994. Comprehension processes during large
scale maintenance, in: Proceedings of 16th International Conference on
Software Engineering, pp. 39–48. doi:10.1109/ICSE.1994.296764.

von Mayrhauser, A., Vans, A., 1995. Industrial experience with an integrated
code comprehension model. Software engineering journal 10, 171–182.
doi:10.1049/sej.1995.0023.

von Mayrhauser, A., Vans, A., 1996. Identification of dynamic comprehension
processes during large scale maintenance. IEEE Transactions on Software
Engineering 22, 424–437. doi:10.1109/32.508315.

von Mayrhauser, A., Vans, A.M., 1993. From code understanding needs to
reverse engineering tool capabilities, in: Proceedings of 6th International
Workshop on Computer-Aided Software Engineering, pp. 230–239. doi:10.
1109/CASE.1993.634824.

von Mayrhauser, A., Vans, A.M., 1998. Program understanding behavior dur-
ing adaptation of large scale software, in: Proceedings. 6th International
Workshop on Program Comprehension. IWPC98 (Cat. No.98TB100242),
pp. 164–172. doi:10.1109/WPC.1998.693345.

von Mayrhauser, A., Vans, A.M., Howe, A.E., 1997. Program understanding
behaviour during enhancement of large-scale software. Journal of Software
Maintenance: Research and Practice 9, 299–327. doi:10.1002/(SICI)
1096-908X(199709/10)9:5<299::AID-SMR157>3.0.CO;2-S.

McKeithen, K., Reitman, J., Rueter, H., Hirtle, S., 1981. Knowledge organiza-
tion and skill differences in computer programmers. Cognitive Psychology
13, 307–325. doi:10.1016/0010-0285(81)90012-8.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Group, T.P., 2009. Preferred
reporting items for systematic reviews and meta-analyses: The prisma state-
ment. PLOS Medicine 6. doi:10.1371/journal.pmed.1000097.

Mosemann, R., Wiedenbeck, S., 2001. Navigation and comprehension of pro-
grams by novice programmers, in: Proceedings 9th International Workshop
on Program Comprehension. IWPC 2001, IEEE. pp. 79–88.

Mynatt, B.T., 1984. The effect of semantic complexity on the comprehension
of program modules. International Journal of Man-Machine Studies 21, 91–
103. doi:10.1016/S0020-7373(84)80060-7.

Nanz, S., Furia, C.A., 2015. A comparative study of programming languages
in rosetta code, in: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, pp. 778–788. doi:10.1109/ICSE.2015.90.

Navarro-Prieto, R., Cañas, J.J., 2001. Are visual programming languages bet-
ter? The role of imagery in program comprehension. International Journal of
Human-Computer Studies 54, 799–829. doi:10.1006/ijhc.2000.0465.

Nosál, M., Porubän, J., 2015. Program comprehension with four-layered mental
model, in: 2015 13th International Conference on Engineering of Modern
Electric Systems (EMES), pp. 1–4. doi:10.1109/EMES.2015.7158420.

Oliveira Aureliano, V.C., 2013. A methodology for teaching programming for
beginners, in: Proceedings of the ninth annual international ACM confer-
ence on International computing education research, ACM. pp. 169–170.

Pariser, E., 2011. The Filter Bubble: How the New Personalized Web Is Chang-
ing What We Read and How We Think. Penguin. Google-Books-ID: wcal-
rOI1YbQC.

Parkin, P., 2004. An exploratory study of code and document interactions dur-
ing task-directed program comprehension, in: 2004 Australian Software En-
gineering Conference. Proceedings., pp. 221–230. doi:10.1109/ASWEC.
2004.1290475.

Parnin, C., Siegmund, J., Peitek, N., 2017. On the nature of programmer exper-
tise., in: PPIG, p. 16.

Pennington, N., 1987a. Comprehension strategies in programming, in: Empir-
ical Studies of Programmers: Second Workshop, Ablex Publishing Corp..
pp. 100–113.

Pennington, N., 1987b. Stimulus structures and mental representations in expert
comprehension of computer programs. Cognitive Psychology 19, 295–341.
doi:10.1016/0010-0285(87)90007-7.

Petre, M., Blackwell, A.F., 1999. Mental imagery in program design and visual
programming. International Journal of Human-Computer Studies 51, 7–30.
doi:10.1006/ijhc.1999.0267.

Prechelt, L., 2000. An empirical comparison of seven programming languages.
Computer 33, 23–29. doi:10.1109/2.876288.

Ramalingam, V., Wiedenbeck, S., 1997. An empirical study of novice pro-
gram comprehension in the imperative and object-oriented styles, in: Papers
Presented at the 7th Workshop on Empirical Studies of Programmers, ESP
1997, pp. 124–139.

Robertson, S., Yu, C.C., 1990. Common cognitive representations of program
code across tasks and languages. International Journal of Man-Machine
Studies 33, 343–360. doi:10.1016/S0020-7373(05)80123-3.

Romero, P., 2001. Focal structures and information types in prolog. Inter-
national Journal of Human-Computer Studies 54, 211236. doi:10.1006/

14

ijhc.2000.0408.
Romero, P., Du Boulay, B., 2004. Structural knowledge and language no-

tational properties in program comprehension, in: 2004 IEEE Sympo-
sium on Visual Languages - Human Centric Computing, pp. 223–225.
doi:10.1109/VLHCC.2004.50.

Sajaniemi, J., Prieto, R.N., 2005. An investigation into professional program-
mers’ mental representations of variables, in: Proceedings - IEEE Workshop
on Program Comprehension, pp. 55–64.

Schmidt, A.L., 1986. Effects of experience and comprehension on reading time
and memory for computer programs. International Journal of Man-Machine
Studies 25, 399–409. doi:10.1016/S0020-7373(86)80068-2.

Scholtz, J., Wiedenbeck, S., 1990. Learning second and subsequent program-
ming languages: A problem of transfer. International Journal of Human-
Computer Interaction 2, 51–72. doi:10.1080/10447319009525970.

Schömann, M., 1995. Knowledge organization of novices and advanced pro-
grammers: Effect of previous knowledge on recall and recognition of lisp-
procedures, in: Cognition and computer programming, Ablex Publishing.
pp. 193–217.

Shaft, T.M., Vessey, I., 1995. Research report-the relevance of application do-
main knowledge: The case of computer program comprehension. Info. Sys.
Research 6, 286–299. doi:10.1287/isre.6.3.286.

Shaft, T.M., Vessey, I., 1998. The relevance of application domain knowledge:
Characterizing the computer program comprehension process. Journal of
Management Information Systems 15, 51–78. doi:10.1080/07421222.
1998.11518196.

Shneiderman, B., 1976. Exploratory experiments in programmer behavior.
International Journal of Computer & Information Sciences 5, 123–143.
doi:10.1007/BF00975629.

Siegmund, J., Kästner, C., Liebig, J., Apel, S., Hanenberg, S., 2014. Measuring
and modeling programming experience. Empirical Software Engineering
19, 1299–1334. doi:10.1007/s10664-013-9286-4.

Snyder, J.R., 1995. The role of local program information in software mainte-
nance productivity. Ph.D. thesis. ProQuest Information & Learning.

Soloway, E., Ehrlich, K., 1984. Empirical studies of programming knowl-
edge. IEEE Transactions on Software Engineering SE-10, 595–609. doi:10.
1109/TSE.1984.5010283.

Stone, D.N., Jordan, E.W., Wright, M.K., 1990. The impact of pascal education
on debugging skill. International Journal of Man-Machine Studies 33, 81–
95. doi:10.1016/S0020-7373(05)80116-6.

Storey, M.A., 2006. Theories, tools and research methods in program compre-
hension: past, present and future. Software Quality Journal 14, 187–208.
doi:10.1007/s11219-006-9216-4.

Sulı́r, M., 2015. Sharing developers mental models through source code annota-
tions, in: 2015 Federated Conference on Computer Science and Information
Systems (FedCSIS), pp. 997–1006. doi:10.15439/2015F301.

Teasley, B., 1994. The effects of naming style and expertise on program com-
prehension. International Journal of Human - Computer Studies 40, 757–
770. doi:10.1006/ijhc.1994.1036.

Teh, A., Baniassad, E., Rooy, D.v., Boughton, C., 2012. Social psychology and
software teams: Establishing task-effective group norms. IEEE Software 29,
53–58. doi:10.1109/MS.2011.157.

Tubaishat, A., 2001. A knowledge base for program debugging, in: AICCSA
’01 Proceedings of the ACS/IEEE International Conference on Computer
Systems and Applications, pp. 321–327. doi:10.1109/AICCSA.2001.
934005.

Vans, A.M., 1996. A multi-level code comprehension model for large-scale
software. Ph.D. thesis. ProQuest Information & Learning.

Vans, A.M., von Maryhauser, A., Somlo, G., 1999. Program understanding
behavior during corrective maintenance of large-scale software. Interna-
tional Journal of Human-Computer Studies 51, 31–70. doi:10.1006/ijhc.
1999.0268.

Vessey, I., 1987. On matching programmers’ chunks with program structures:
An empirical investigation. International Journal of Man-Machine Studies
27, 65–89. doi:10.1016/S0020-7373(87)80044-5.

Vihmalo, A., Vihmalo, M., 1988. Utilization of subject’s background knowl-
edge in computer program comprehension. Zeitschrift fr Psychologie mit
Zeitschrift fr angewandte Psychologie 196, 401–413.

Weiser, M., 1981. Program slicing, in: Proceedings - International Conference
on Software Engineering, pp. 439–449.

Weiser, M., Ledgard, H., 1982. Programmers use slices when debugging. Com-
munications of the ACM 25, 446–452. doi:10.1145/358557.358577.

Whalley, J., Kasto, N., 2014. A qualitative think-aloud study of novice pro-
grammers code writing strategies, in: Proceedings of the 2014 conference
on Innovation & Technology in Computer Science Education, pp. 279–284.
doi:10.1145/2591708.2591762.

Wiedenbeck, S., 1991. The initial stage of program comprehension. In-
ternational Journal of Man-Machine Studies 35, 517–540. doi:10.1016/
S0020-7373(05)80090-2.

Wiedenbeck, S., Fix, V., Scholtz, J., 1993. Characteristics of the mental repre-
sentations of novice and expert programmers: An empirical study. Interna-
tional Journal of Man-Machine Studies 39, 793–812. doi:10.1006/imms.
1993.1084.

Wiedenbeck, S., Ramalingam, V., 1999. Novice comprehension of small
programs written in the procedural and object-oriented styles. Interna-
tional Journal of Human-Computer Studies 51, 71–87. doi:10.1006/ijhc.
1999.0269.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., Corritore, C.L., 1999. A
comparison of the comprehension of object-oriented and procedural pro-
grams by novice programmers. Interacting with Computers 11, 255–282.
doi:10.1016/S0953-5438(98)00029-0.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering, in: Proceedings of the 18th inter-
national conference on evaluation and assessment in software engineering,
Citeseer. p. 38.

Wong, S.Y., Cheung, H., Chen, H.C., 1998. The advanced program-
mers reliance on program semantics: Evidence from some cognitive
tasks. International Journal of Psychology 33, 259268. doi:10.1080/
002075998400303.

Ye, N., Salvendy, G., 1996. An objective approach to exploring skill differences
in strategies of computer program comprehension. Behaviour & Information
Technology 15, 139–148. doi:10.1080/014492996120229.

Yeh, K.C., 2014. Toward understanding the cognitive processes of software de-
sign in novice programmers. Ph.D. thesis. ProQuest Information & Learn-
ing.

15

