Quiz 2

CS 3853

August 07, 2024

Name (please print):

Student ID: _____

Total points: 30

Duration: 1 hour

Instructions:

- Please answer all questions
- The quiz is open book, and you can use the internet
- Individual work is expected, therefore group discussion is prohibited
- You can check your lecture notes, your own notes and the text book during the quiz
- You can use calculator as well the IAS instruction set

1. (6 points) Implement a D-FF using a T-FF and any additional gates that you may need. Follow the formal procedures described in class.

Give full marks even without the XOR solution. No circuit needs to be drawn.

2. (4 points) We have 16 KiB of RAM and two options for our cache. Cache A is size 1 KiB, with 256 B blocks and is direct-mapped. Cache B is size 2 KiB, also with 256 B blocks and is 4-way set associative.

- Show the address format for cache A (2 points).
 Solution: 0.5 points for each of the three computations, tag, index and offset.
 0.5 for showing the address format
 Offset bits = log₂256 = 8
 Index = 2¹⁰/2⁸ = 2
 For 14 address bits
 Tag = 14 2 8 = 4
 Note: If anyone assumes any other number of bits, will be graded accordingly
- Show the address format for cache B (2 points).
 Solution: 0.5 points for each of the three computations, tag, index and offset.
 0.5 for showing the address format
 Offset bits = log₂256 = 8
 Blocks = 2 KiB = 8
 sets = 4 blocks/set = 1 set
 For 14 address bits
 Tag = 14 8 1 = 5
 Note: If anyone assumes any other number of bits, will be graded accordingly

I1:	R1	=	100		
I2:	R1	=	R2	+	R5
I3:	R2	=	R4	-	25
I4:	R4	=	R1	+	RЗ
I5:	R1	=	R1	+	30

Identify the:

- Write-After-Read (WAR) dependencies (2 points).
- Write-After-Write (WAW) dependencies (2 points).

4 points - 1 for each dependency

WAW - write after write - $\{I1,\,I2\}$

WAR - write after read - $\{I2,\,I3\},\,\{I3,\,I4\},\,\{I4,\,I5\},$

4. (6 points) Is it possible to design an expanding opcode to allow the following to be encoded in a 32 bit instruction? A register is 8 bits.

6 points - 1 for computing bits for each instruction, the total bits and the specified instruction bits (32) points, then 1 for the conclusion

- 4 instructions with 3 registers. $4 \times 2^8 \times 2^8 \times 2^8 = 4 \times 2^{24} = 2^{26} = 67108864$ bit patterns
- 255 instructions with one register. $255 \times 2^8 = 65280$ bit patterns
- 16 instructions with zero registers.
 16 bit patterns

Total bits = 67108864 + 65280 + 16 = 67174160With 32 bit instruction we can have $2^{32} = 4294967296$ bit patterns Required bit patterns (67174160) is less than what we have (4294967296), so this instruction set is possible with 32 bits 5. (10 points) A computer has a single L_1 cache with a 2 ns hit time and a 2% miss rate. Main memory has a 60 ns access time. If we add an L_2 cache with a 1.5 ns hit time and a 6% miss rate.

- What is the computer's effective access time without the L_2 cache (3 points). $AMAT = Hit Time + Miss Rate \times Miss Penalty$ $AMAT = T_{hit}(L1) + Miss\%(L1) \times T(Mem)$ = 2 ns + .02 * 60 ns = 3.2 ns
- What is the computer's effective access time with the L_2 cache (4 points). $AMAT = Hit Time_{L1} + Miss Rate_{L1} \times (Hit Time_{L2} + Miss Rate_{L2} \times Miss Penalty_{L2})$ = 2 ns + .02(1.5 ns + 0.06(60 ns)) = 2.1 ns
- How much of a speedup does the L_2 cache give the computer (3 points). = 3.2/2.1 = 1.52The L_2 speeds up the computer by $1.5 \times$