Designing Sequential Circuits

Joannah Nanjekye

July 17, 2024

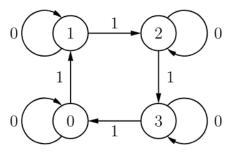
Steps in Designing Sequential Circuits

- 1. Create a state table and/or state diagram
- 2. Create binary-code for the state table and/or state diagram
- 3. Choose a type of flip-flop
- 4. Add columns to the state table that show the input required for each flip flop, to effect each required transition
- 5. Simplify each flip-flop input(s)
- 6. Draw the circuit

Example

Design a counter that has an *Enable* input When *Enable* = 1 it increments through the sequence 0,1,2,3,0,1,... with each clock tick. *Enable* = 0 causes the counter to remain in its current state.

1. State Diagram



1. State Table

	$Enable = {\tt 0}$	Enable= 1
Current	Next	Next
n	n	n
0	0	1
1	1	2
2	2	3
3	3	0

2. Binary Code for the State Table

N states required log₂N bits

E.g 4 states = 2 bits

			le = 0		
Cur	rent	Next		Ne	ext
n_1	n_0	n_1	n_0	n_1	n_0
0	0	0	0	0	1
0	1	0	1	1	0
1	0	1	0	1	1
1	1	1	1	0	0

3. Choose a Flip-flop

- Any flip-flop can be used
- ▶ If in doubt use J-K flip-flops for their general use cases
- I this example we will use the JK flip-flop

4. Add Columns for Flip-flop Inputs

► Consult the excitation tables for the chosen flip flop

		Enable = 0				E	Enal	ole =	1				
Cur	rent			N	ext					Ν	ext		
n_1	n_0	n_1	n_0	J_1	K_1	J_0	K_0	n_1	n_0	J_1	K_1	J_0	K_0
0	0	0	0	0	X	0	X	0	1	0	X	1	X
0	1	0	1	0	\boldsymbol{X}	\boldsymbol{X}	0	1	0	1	X	\boldsymbol{X}	1
1	0	1	0	\boldsymbol{X}	0	0	\boldsymbol{X}	1	1	\boldsymbol{X}	0	1	\boldsymbol{X}
1	1	1	1	\boldsymbol{X}	0	\boldsymbol{X}	0	0	0	X	1	\boldsymbol{X}	1

Qn	Q n+1	J	K
0 =	→ 0	0	X
1 =	→ 0	Х	1
0 =	1	1	X
1 =	1	Х	0

5. Simplify the Flip-Flop Input(s)

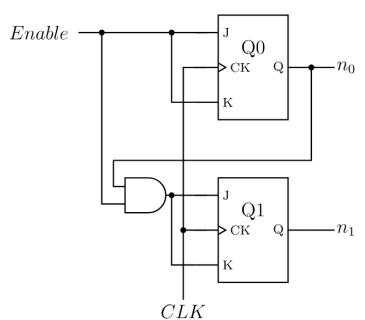
We can use Karnaugh maps

$$K_0(E, n_1, n_0) \quad \begin{array}{cccc} n_1 n_0 & & \\ 00 & 01 & 11 & 10 \\ & X & & X \\ 1 & \hline X & 1 & 1 & X \\ \end{array}$$

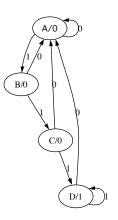
$$J_{1}(E, n_{1}, n_{0}) \quad \begin{array}{cccc} n_{1}n_{0} & & \\ 00 & 01 & 11 & 10 \\ & & & X & X \\ E_{1} & & 1 & X & X \end{array}$$

$$J_0(E,n_1,n_0) = E \ K_0(E,n_1,n_0) = E \ J_1(E,n_1,n_0) = E \cdot n_0 \ K_1(E,n_1,n_0) = E \cdot n_0$$

6. Draw the Circuit



Example



- explain the state diagram
- what is the output given the input sequence: 001101111100101111?
- assume it starts in sate "A"

Next State Table

q	x = 0	x = 1	Z
Α	Α	В	0
В	Α	C	0
C	Α	D	0
D	Α	D	1

- the information on the next state table is the same as in the FSM diagram
- Next step: state assignment
- how many bits do we need to keep track of the states?

State Assignment

A possible state assignment

q	q_1	q_2
Α	0	0
В	0	1
C	1	0
D	1	1

- how many state assignments are possible?
- are some better than others?

Design Truth Table

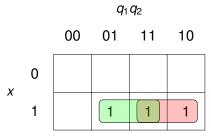
q	Χ	q_1	q_2	q_1^*	q_2^*
Α	0	0	0	0	0
В	0	0	1	0	0
C	0	1	0	0	0
D	0	1	1	0	0
Α	1	0	0	0	1
В	1	0	1	1	0
C	1	1	0	1	1
D	1	1	1	1	1

Design the circuit

- implement the FSM using D-FF
- Draw a Karnaugh map for q₁* and q₂*
- Draw a Karnaugh map for the output
- find the equations
- draw the circuit
- this is known as a Moore Machine (the output depends on the current state only)

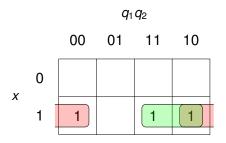
D-FF equations

From the truth table (see 2 slides back) write the Karnaugh maps.



$$q_1^* = xq_1 + xq_2$$

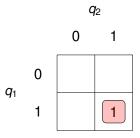
D-FF equations



$$q_2^* = xq_1 + x\overline{q_2}$$

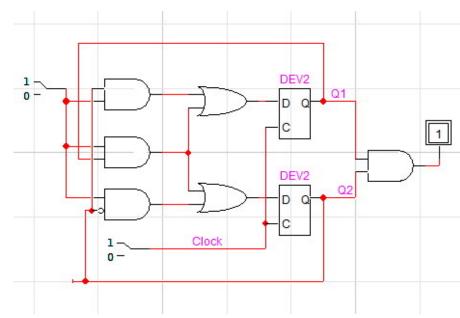
Output equation

The output depends **only** on the current state.



$$F = q_1q_2$$

The circuit — with D-FFs



T Flip-Flop

Definition (T Flip-Flop)

The state is complemented if T = 1, it stays the same if T = 0.

T Flip Flop truth table

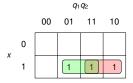
$$\begin{array}{c|c} T & Q_{n+1} \\ \hline 0 & Q_n \\ 1 & \overline{Q_n} \end{array}$$

Problem

Draw the Karnaugh maps for T-FF.

T Flip-Flop

D-FF

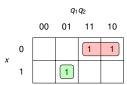


$$q_1^* = xq_1 + xq_2$$

$$q_1q_2$$
00 01 11 10
$$x = 0$$
1 1 1 1

$$q_2^* = xq_1 + x\overline{q_2}$$

T-FF



$$q_{1}^{*} = \overline{x}q_{1} + x\overline{q_{1}}q_{2}$$

$$00 \quad 01 \quad 11 \quad 10$$

$$x \quad 0 \quad 1 \quad 1 \quad 1$$

$$q_2^* = \overline{x}q_2 + \overline{x_1}x_2 + x\overline{q_2}$$

K-map Transformation Rules: from *D* to *T*

Given a K-map for the next state variable x for a D-FF, do the following:

- 1. for all map entries where x = 0, transfer the values to the K map for the T-FF
- 2. for all map entries where x = 1, transfer the **complemented** values to the K map for the T-FF

For example, in the previous slide the first two columns for q_1^* (where $q_1=0$) are the same, and the last two are complemented.

JK-FF Behavioural Table

J	Κ	q	q*
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
_1	1	1	0

JK-FF Behavioural Table

J	K	q	q*
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
_1	1	1	0

J	K	q*
0	0	q
0	1	0
1	0	1
1	1	\overline{q}

Example

Problem

Design a Moore Machine that will output a 1 iff they have been 2 ones followed by a zero and a one.

- 1. draw the state diagram
- 2. write the next state table (include output)
- 3. find a state assignment
- 4. state table to Karnaugh maps (depends on FFs used)
- 5. find the equations
- 6. draw the circuit

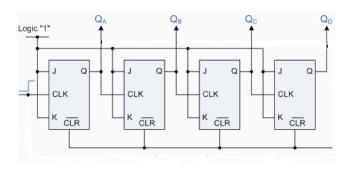
Design of an Synchronous Counter

Problem

Design a 4-bit counter (follow standard procedures)

- 1. use D-FF
- 2. use T-FF
- 3. use JK-FF
- 4. compare the designs
- 5. can you generalize?

Design of an Asynchronous Counter



NOTE: The FFs are negative edge sensitive.

Problem

Modify the counter to count $0, 1, \ldots, 8, 9, 0, 1, \ldots$

References

- https://bob.cs.sonoma.edu/IntroCompOrg-RPi/secseqdes.html
- https://www.allaboutelectronics.org/jk-flip-flop-explainedrace-around-condition-in-jk-flip-flop-jk-flip-flop-truth-tableexcitation-table-and-timing-diagram/