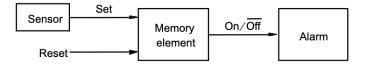
Sequential Circuits

Joannah Nanjekye

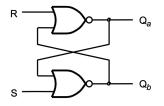
July 17, 2024


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Sequential Circuits

The current output of a sequential circuit depends on the current input and the current state of that circuit

The circuit contains storage elements


It is basically a combinational circuit with a memory component

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Flip-Flops

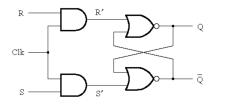
- A form of sequential circuit
- Characteristics of flip-flops:
 - It is a bistable device, exists in two states
 - Has two outputs, that are complements of each other
 - Constructed with NAND or NOR gates

S	R	Qa	Q _b	
0	0	0/1	1/0	(no change)
0	1	0	1	
1	0	1	0	
1	1	0	0	

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(a) Circuit

(b) Truth table


SR Latch

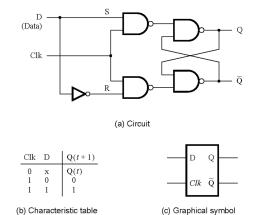
R	S	<i>Q</i> _{n+1}	\overline{Q}_{n+1}	
0	0	Qn	\overline{Q}_n	previous state
0	1	1	0	set Q to 1
1	0	0	1	reset Q to 0
1	1	0	0	forbidden

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Clocked SR flip-flop

- In the basic SR latch, the state changes only on input change
- For more control we need to add a clock to the latch to change state at particular times
- Problem with the SR latch: a spike in S or R will set/reset Q
- Solution: only allow S or R to change when the clock is low

(a) Circuit


Clk	S	R	Q(t+1)
0	x	x	Q(t) (no change)
1	0	0	Q(t) (no change)
1	0	1	0
1	1	0	1
1	1	1	x

(b) Characteristic table

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

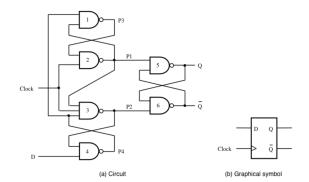
Gated D latch

- The condition R = 1, S = 1 must be avoided (allow one input)
- Has one input instead of two
- Capture the data when the clock is high
- As long as the E is high the output changes according to the input

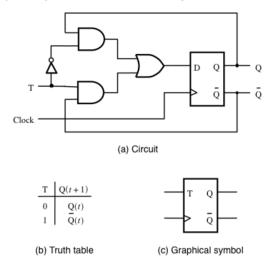
IN 4 ∃ N = 9000

Edge Triggering

- Design storage elements where the output changes only when the clock changes
- These circuits are called edge triggered
- Propagation delay for a D latch:
 - Stores the value of D input at the time clock goes from 1 to 0

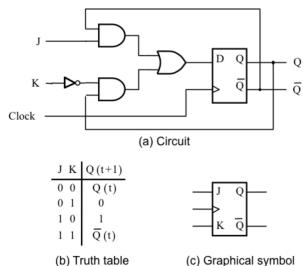

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Operates properly if input is stable (not changing) at the time clk goes from 1 to 0


Positive-edge-triggered D flip-flop

- The output should only change once during a clock cycle
- Change on the edge of a cycle
- This can be accomplished as follows (master-slave)
- Master, changes its state when clk=1
- Slave, changes its state when clk=0

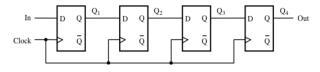
Positive-edge-triggered T flip-flop


• The output "flips" if T = 1; no change if T = 0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Positive-edge-triggered JK flip-flop

- J=S and K=R and behaves like a SR flip-flop
- Except all states are valid
- This is achieved by toggling the output

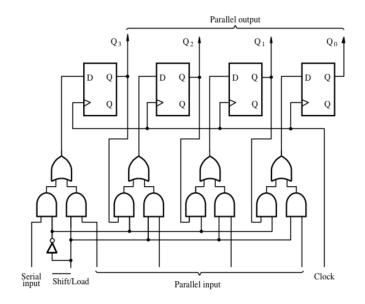

- ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → 외 � @

Registers

- A number of flip-flops used to store bits of data i.e, n flip-flops store n bits information
- Two kinds of registers:
 - Shift Registers: accept and/or transfers data serially
 - Parallel Registers: has a set of 1-bit memories that can be read or written simultaneously

(ロ) (同) (三) (三) (三) (○) (○)

Shift Register


(a) Circuit

	In	Q_1	Q_2	Q_3	$Q_4 = Out$
t_0	1	0	0	0	0
t_1	0	1	0	0	0
t_2	1	0	1	0	0
t_3	1	1	0	1	0
t_4	1	1	1	0	1
t_5	0	1	1	1	0
t_6	0	0	1	1	1
t_7	0	0	0	1	1

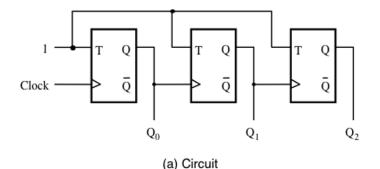
(b) A sample sequence

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Parallel Register

Counters

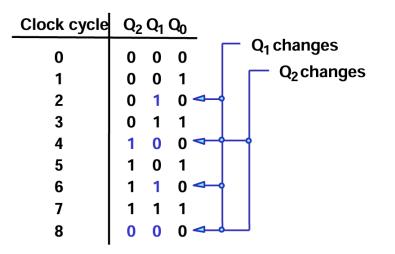
- Circuits that can increment or decrement a count by 1
- Can be built with T and D flip-flops
- Counters can be:
 - asynchronous
 - synchronous



(a) Circuit

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

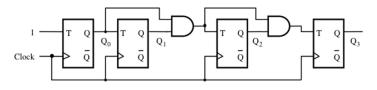
Asynchronous Counters


- In our example a counter has three flip-flops but can have more latches
- The first flip-flop is the only one that is clocked (attached to the clock)
- The other flip-flops experience a propagation delay that affects their response

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Synchronous Counters

- Solves the challenges for asynchronous counters
- By clocking all the flip-flops at once



ヘロト 人間 とくほ とくほ とう

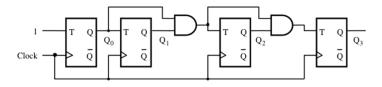
-

Synchronous Counters

- Q0 is triggered on each clock cycle
- Q1 is triggered when Q0=1
- Q2 is triggered when Q1=1 and Q0=1

(a) Circuit

・ コット (雪) (小田) (コット 日)


Synchronous Counters

► $T_0 = 1$

$$\blacktriangleright T_1 = Q_0$$

$$\blacktriangleright T_2 = Q_0 Q_1$$

$$\succ T_3 = Q_0 Q_1 Q_2$$



(a) Circuit

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

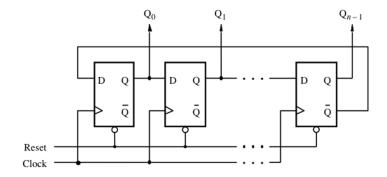
Ring Counter

- Counters usually have state in flip-flops
- For ring counters, the output of the last flip-flop is connected as an input to the first flip-flop
- The non-complemented output is the one that is connected back to the input

(a) An n-bit ring counter

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Ring Counter


- Can be made of D-flip flops or JK-flip flop
- Has Mod = n, n is the number of bits
- That is 4-bit ring counter has 4 states
- Only 4 of the 15 states are utilized

States	Q_A	Q_B	Q_C	Q_D
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	1

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Johnson Counter

- Twisted Ring counter
- Complemented output of the flip-flop is connected with the input of the first flip-flop
- Can also be built with D-flip flops or JK-flip flops

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Johnson Counter

- Has Mod = 2n, n is the bit size of the counter
- It therefore counts to a sequence of length 2n
- Utilizes the maximum number of states

States	Q_A	Q_B	Q_C	Q_D
1	0	0	0	0
2	1	0	0	0
3	1	1	0	0
4	1	1	1	0
5	1	1	1	1
6	0	1	1	1
7	0	0	1	1
8	0	0	0	1

https://www.ece.mcmaster.ca/ xwu/2di4/chapter7.pdf

