Number Systems, Computer Arithmetic and Character Systems

Joannah Nanjekye

July 09, 2024

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Decimal System

Consider a whole number: $62₁₀$

- ▶ 62₁₀ = $(60 \times 10^1) + (2 \times 10^0)$
- \triangleright 62₁₀ = 111110₂

Consider a fraction number: 0.456_{10}

$$
0.456_{10} = (4 \times 10^{-1}) + (5 \times 10^{-2}) + (6 \times 10^{-3})
$$

 \triangleright 0.81₁₀ = 0.110011₂

The right had side is the Least Significant Bit while the left hand side is the Most Significant Bit

KORKARA KERKER DAGA

Binary System

▶ 111110₂ = $(1 \times 2^5) + (1 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (1 \times 2^1)$ $+ (0 \times 2^0) = 62_{10}$

KORKARYKERKE PORCH

▶ 1001.101 = $2^3 + 2^0 + 2^{-1} + 2^{-3} = 9.625_{10}$

Hexadecimal System

- ▶ Binary digits are grouped into sets of four bits, called a nibble
- \triangleright 00010001₂ = 11₁₆
- \blacktriangleright 41₁₆ = 00100001₂

$$
41_{16} = (4 \times 16^{1}) + (1 \times 16^{0}) = 65_{10}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Hexadecimal System

- \triangleright Why the hexadecimal notation is preferred:
	- \blacktriangleright It is more compact than binary notation
	- ▶ In most computers, binary data occupy some multiple of 4 bits, and hence some multiple of a single hexadecimal digit

KOD KOD KED KED E VAN

▶ It is extremely easy to convert between binary and hexadecimal notation

Integer Representation

- ▶ Consider an 8-bit word
- \blacktriangleright It can represent positive numbers from 0 to 255
- \triangleright And negative numbers from -127 to +128
- \triangleright This is because the the Most Significant Bit will represent the sign

KOD KOD KED KED E VAN

Sign Magnitude Representation

- \blacktriangleright In an n-bit word, the right most n 1 bits hold the magnitude of the integer:
	- \blacktriangleright +18 = 00010010
	- \blacktriangleright -18 = 10010010
- \blacktriangleright Limitations of the sign magnitude representation
	- ▶ Arithmetic has to consider both the sign and magnitude

KORKARA KERKER DAGA

 \blacktriangleright There are two representations of zero (+0 and -0)

twos Complement

- \blacktriangleright +3 = 00000011
- $+2 = 00000010$
- $+1 = 00000001$
- \blacktriangleright +0 = 000000000
- \blacktriangleright -1 = 11111111
- \blacktriangleright -2 = 11111110
- \blacktriangleright 3 = 11111101

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Integer Arithmetic: Negation

- ▶ In twos complement negation is achieved in two steps:
	- ▶ compute the Boolean complement of each bit of the integer
	- ▶ Treat he result as an unsigned binary integer, add 1
- \blacktriangleright +18 = 00010010
- \triangleright bit wise complement = 11101101
- \blacktriangleright 11101101 + 1 = 11101110 = -18
- ▶ Negation is referred to as the **twos complement operation**
- ▶ There are two special cases 0 and 128 for an 8-bit representation:
	- \triangleright 0 = 00000000 twos complement + 1 = [1]00000000 = 0 (discard carried 1)
	- \blacktriangleright +128 = 10000000 twos complement + 1 = 10000000 = -128

Integer Arithmetic: Addition

- ▶ Change negative numbers to twos complement
- ▶ Treat positive numbers as unsigned
- ▶ The result is in twos complement form
- \blacktriangleright Whether it is positive or negative

KOD KOD KED KED E VAN

Integer Arithmetic: Addition and Overflow

- \blacktriangleright The result may be larger than the word size
- ▶ This is called an **overflow**
- ▶ When adding two numbers, if they are both positive or both negative, an overflow occurs if and only if the result has the opposite sign

Integer Arithmetic: Subtraction

Subtraction is achieved by performing addition. The number being subtracted (subtrahend) should be converted to twos complement before being added to the minuend

KORK ERKER ADAM ADA

Unsigned: Multiplication

- \triangleright Generate partial products which are summed to get the final product
- ▶ Each successive partial product is shifted one position to the left relative to the preceding partial product
- \triangleright The multiplication of two n-bit binary integers results in a product of up to 2n bits in length (e.g., $11 * 11 = 1001$)

KOD KARD KED KED BE YOUR

Unsigned: Multiplication

There are two approaches:

- ▶ perform a running addition on the partial products (saves storage)
- \triangleright For each 1 on the multiplier, an add and a shift operation are required; but for each 0, only a shift is required

KORK ERKER ADAM ADA

Signed: Multiplication

One alternative is to:

- ▶ convert both multiplier and multiplicand to positive numbers
- \blacktriangleright perform the multiplication
- ▶ compute the twos complement of the result

We can use Booth's algorithm instead.

KORK ERKER ADAM ADA

Unsigned: Division

- \blacktriangleright Examine the bits of the dividend from left to right
- \triangleright Stop when the bits examined correspond to number greater than or equal to the divisor
- \triangleright Before the condition, place 0s in the quotient from left to right
- \triangleright After the condition, place a 1 in the quotient and the divisor is subtracted from the partial dividend

KOD KARD KED KED BE YOUR

Signed: Division

- 1. Compute he twos complement of the divisor
- 2. Express the dividend as a 2n-bit positive number, e.g 4-bit 0111 becomes 00000111
- 3. Shift the dividend left 1 bit position
- 4. Subtract the divisor from the dividend
- 5. If the result is positive, $MSB = o$, then dividend is 1
- 6. If the result is negative, MSB $=$ 1, then dividend is 0
- 7. Repeat steps 2 through 4 as many times as there are bit positions in the dividend

KORK ERKER ADAM ADA

Signed: Division

KOKK@KKEKKEK E 1990

Limitations of the twos Complement

- ▶ Very large and very small numbers can not be represented
- \blacktriangleright The fractional part of the quotient in a division of two large numbers could be lost

KORKARYKERKE PORCH

The Scientific Notation

- \triangleright Move the decimal point to a convenient location
- \triangleright Use the exponent of 10 to keep track of that decimal point
- ▶ This approach can be used on binary numbers as follows:

$\pm \mathcal{S}\times\mathcal{B}^{\pm\mathcal{E}}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Three fields are used to store the binary word of a number:

- \blacktriangleright Sign: plus or minus
- \blacktriangleright Significand S
- ▶ Exponent E
- ▶ Base B

Floating-point Representation

- \blacktriangleright The leftmost bit stores the sign of the number
- \triangleright The exponent value is stored in the next 8 bits
- \blacktriangleright The representation used is known as a biased representation

► Bias = $(2^{k-1} - 1) = 2^7 - 1 = 127$, k is the number of bits

 \blacktriangleright The final portion of the word (23 bits in this case) is the significand

KOD KARD KED KED BE YOUR

IEEE Binary Floating-point Representation

Defines the following format:

- ▶ **Arithmetic format:** all the mandatory operations defined by the standard are supported by the format
- ▶ **Basic format:** covers five floating-point representations, three binary and two decimal, whose encodings are specified by the standard, and which can be used for arithmetic
- ▶ **Interchange format:** fixed-length binary encoding that allows data interchange between different platforms and that can be used for storage

Each of the formats have bit lengths of 32, 64, and 128 bits and exponents of 8, 11, and 15 bits

KORK ERKEY EL POLO

IEEE Binary Floating-point Representation

KOD KARD KED KED BE YOUR

Floating-point Arithmetic

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Examples:

$$
X = 0.3 \times 10^{2} = 30
$$

\n
$$
Y = 0.2 \times 10^{3} = 200
$$

\n
$$
X + Y = (0.3 \times 10^{2-3} + 0.2) \times 10^{3} = 0.23 \times 10^{3} = 230
$$

\n
$$
X - Y = (0.3 \times 10^{2-3} - 0.2) \times 10^{3} = (-0.17) \times 10^{3} = -170
$$

\n
$$
X \times Y = (0.3 \times 0.2) \times 10^{2+3} = 0.06 \times 10^{5} = 6000
$$

\n
$$
X + Y = (0.3 + 0.2) \times 10^{2-3} = 1.5 \times 10^{-1} = 0.15
$$

Addition and Subtraction

- ▶ Check for zeros
- \blacktriangleright Align the significands
- \blacktriangleright Add or subtract the significands

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright Normalize the result

Guard Bits

- ▶ The ALU loads the exponent and significand before a floating point operation
- \blacktriangleright The length of the register is almost always greater than the length of the significand plus an implied bit
- \blacktriangleright The register contains additional bits, called guard bits
- \triangleright To pad out the right end of the significand with 0s

(a) Binary example, without guard bits

(c) Hexadecimal example, without guard bits

 $x = 1.000...000000 \times 2^1$ $-y = 0.111...1111000 \times 2^1$ $z = 0.000...001000 \times 2^1$ $= 1.000...000000 \times 2^{-23}$

(b) Binary example, with guard bits

 $x = .100000000 \times 16^{1}$ $-y = .0$ FFFFF FO \times 16¹ $z = .00000010 \times 16^{1}$ $= .100000000 \times 16^{-5}$

KOD KARD KED KED BE YOUR

(d) Hexadecimal example, with guard bits

Rounding

- \blacktriangleright This is where extra bits in a floating-point format number are removed
- \triangleright To generate a number that is close to the original number
- ▶ Alternative approaches to rounding:
	- ▶ **Round to nearest:** rounded to the nearest representable number

KORK ERKER ADAM ADA

- ▶ **Round toward** +∞**:** rounded up toward plus infinity
- ▶ **Round toward** −∞**:** rounded up toward minus infinity
- ▶ **Round toward 0:** rounded toward zero

Character Systems

- \triangleright We deal with both symbolic alphabetic and numeric data
- ▶ Systems to encode characters as binary numbers are required for a computer
- ▶ Common systems include:
	- ▶ ASCII (American Standard Code for Information Interchange)
	- ▶ EBCDIC (Extended Binary Coded Decimal Interchange Code)

KORK ERKER ADAM ADA

▶ UNICODE (A unique number is provided for each character)

$"One" = O = 0x4F, n = 0x6E, e = 0x65$

Kロトメ部トメミトメミト (ミ) のQC