
Performance and Top Level View

Joannah Nanjekye

July 04, 2024

Reading Assignment

▶ Summarize the major events before the ENIAC machine
▶ Summarize the key highlights in the evolution of the

Motorolla 68000
▶ Embedded System organization and their operating

systems

Performance Improvements

▶ Speedup the processor hardware by reducing the logic
gate size

▶ Increase the size and speed of caches
▶ Modify the processor organization and architecture e.g by

parallelizing some parts

Performance Mechanisms

▶ Pipelining: processor moves data or instructions into a
conceptual pipe with all stages of the pipe processing
simultaneously

▶ Branch prediction: processor looks ahead in the
instruction code fetched from memory and predicts which
branches, or groups of instructions, are likely to be
processed next

▶ Superscalar execution: This is the ability to issue more
than one instruction in every processor clock cycle. In
effect, multiple parallel pipelines are used

Performance Mechanisms

▶ Data flow analysis: the processor analyzes which
instructions are dependent on each other’s results, or data,
to create an optimized schedule of instructions

▶ Speculative execution: using branch prediction and data
flow analysis, some processors speculatively execute
instructions ahead of their actual appearance in the
program execution, holding the results in temporary
locations

Performance

▶ Concerns from the Architectural perspective:
▶ System performance
▶ Relative importance
▶ Cost
▶ Cost/Performance trade-off

▶ Performance comparison:
▶ Criteria
▶ Metric

Question: What factors in the architecture affect system
performance and the cost of these factors?

Latency and Throughput

▶ Latency is execution time
▶ How long it takes to finish a task
▶ Computed by tracking the start and end time

▶ Throughput is the number of instructions per unit time
▶ The unit should be defined e.g. hour, second etc

▶ Depending on the application latency and throughput can
be improved in different ways

What is Performance

Performance (P) = 1/Latency (L)

How to compare two programs:
▶ If X takes 50s and Y takes 25s
▶ Performance = LX / LY = 50/25= 2

Therefore Y is 2× faster than X

Performance Metrics

▶ CPU Time
▶ Time taken to finish a task without regard to I/O time and

task sharing
▶ Includes time spent in the program as well as OS tasks

▶ CPU performance is different from system performance
since the later accounts for the total response time
inclusive of all aspects

▶ The rate of pulses is called clock speed or clock rate
▶ One pulse is a clock cycle or clock tick

The Performance Equation

CPU Time = Clock Cycles × Clock Cycle Time

CPU Time =
Clock Cycles
Clock Rate

Clock cycles per instruction (CPI): the average number of
clock cycles each instruction takes to execute. It is used to
compare different implementations of the same ISA

Clock Cycles = instruction count × CPI

CPU Time = instruction count × CPI × Clock Cycle Time

CPU Time =
instruction count × CPI

Clock Rate

Example

Consider three processors L, M, and N with clock rates of
5GHZ, 3GHZ and 8GHZ respectively. And CPI values 1.5, 2.8,
and 2.0. Calculate the number of cycles if execution time is 20s.

CPU Time =
Clock Cycles
Clock Rate

Cycles for L = 20 × 5 × 109

Cycles for M = 20 × 3 × 109

Cycles for N = 20 × 8 × 109

Example

Consider three processors L, M, and N with clock rates of
5GHZ, 3GHZ and 8GHZ respectively. And CPI values 1.5, 2.8,
and 2.0. Calculate the performance in instructions per second.

CPU Time =
instruction count × CPI

Clock Rate

Performance for L =
5 × 109

1.5

Performance for M =
3 × 109

2.8

Performance for N =
8 × 109

2.0

CPI
▶ We can have different instruction classes with different

number of cycles
▶ Consider n classes

▶ For example, given classes X, Y, Z with CPI 4, 5 and 6.
▶ And instruction counts of 1, 2, 3 respectively
▶ Then the Clock Cycles will be:

= (1 × 4) + (2 × 5) + (3 × 6)

= 32

Note: You can be given frequency instead of instruction count,
the same computation applies by replacing frequency with
instruction count

Key Performance Factors

▶ CPI: depends on the instruction type and the ISA details
▶ Instruction Count: measured using a profiler or simulator

and is independent of implementation details
▶ Clock Rate: is usually given

CPU Time = instruction count × CPI × clock cycle

CPU Time =
instruction count × CPI

clock rate

Summary of the Performance Equation

CPU Time = (instructions
program × (cycles

instruction)× (seconds
cycle)

▶ Instructions / program: dynamic instruction count
▶ Function of program, compiler, instruction set architecture

(ISA)
▶ Cycles / instruction: CPI

▶ Function of program, compiler, ISA, micro-architecture
▶ Seconds / cycle: clock period

▶ Function of the micro-architecture

The MIPS Rate

▶ Alternate measure of processor performance
▶ Refers to the rate at which instructions are executed
▶ MIPS = millions of instructions per second

MIPS =
instruction count

ExecutionTime × 106

MIPS =
frequency
CPI × 106

▶ Limitations of MIPS include not accounting for:
▶ Differences in ISAs between computers
▶ Differences in complexity between instructions

Example

Compilers have profound impact on performance of an
application. Consider a compiler X with instruction count 2.2E9
and execution time 5 seconds. What is the MIPS rate:

MIPS =
instruction count

ExecutionTime × 106

MIPS Rate =
2.2 × 109

5 × 106

Benchmarking

▶ The instruction rate is not a useful measure of performance
▶ Instead a set of programs of interest should be used
▶ Workload: a set of tasks run on a computer that is either a

representative of the actual program or the actual user
application

▶ Benchmarks: are standard workloads chosen to compare
performance across machines

Benchmark Principles

Desired characteristics of benchmark programs:
▶ Written in a high-level language for portability across

different machines
▶ Representative of a particular kind of programming

domain or paradigm, e.g. numerical, systems, or
commercial programming

▶ Can be measured easily
▶ Have wide distribution

Examples include:
▶ SPEC
▶ GeekBench (others)
▶ PyPerformance (others)

SPEC Benchmarking Example

SPEC Benchmarking Results

Reporting or Summarizing Performance Results
▶ Arithmetic Mean: is an appropriate measure if the sum of

all the measurements is a meaningful and interesting value

▶ For units that are proportional to time (latency)

▶ Harmonic Mean: when a system’s execution rate may be
viewed as a more useful measure of the value of the
system
▶ For units that are inversely proportional to time (throughput)

▶ Geometric Mean: provides consistent results when
measuring the relative performance of machines
▶ For unitless quantities (speedup ratios)

SPEC Benchmarking Results

Performance Laws

▶ There are basically two equations on performance
▶ Provide insight in the performance of parallel and multicore

systems:
▶ Amdahl’s law
▶ Little’s law

Amdahl’s Law

Expresses a limitation in optimization: a speedup in one
aspect does not result in a corresponding improvement in
general performance

(1 − f) = fraction of time spent executing sequential code

(f) = fraction of time spent executing parallelized code

(N) = number of processors

Example

Consider that 45% of the execution time is spent in parallel
code. What is the speed up with an infinite number of
processors?

T =
1

1 − 0.45
What is the speed up with 2×cores?

T =
1

(1 − 0.45) + 0.45
2

Amdahl’s Law

Parallel processors have little impact when less time is spent on
parallel code

Amdahl’s Law

There are diminishing returns for using more processors

Little’s Law

Assumes that the system in in steady state. i.e, average arrival
time = average departure time

L = λW

L = items in the system

λ = average arrival rate

W = average wait time

Works on most queue-based systems
It works because it requires very few assumptions
We only need to measure two of the parameters

Example

Consider check-in of an airline where 385 passengers checkin
at 5:00 AM. The average number of passengers waiting for
check-in is about 60. What is the average wait time for this
airline.

W =
L
λ

W =
60

385

Top Level View

Overview of Top Level Components

▶ Main Memory: is made of a set of locations:
▶ Locations are defined with linearly numbered addresses
▶ Each location has a binary number that represents either

an instruction or data
▶ I/O Module: moves data from the external environment to

the CPU and memory
▶ Data may not be sent immediately
▶ Temporary internal buffers hold this data until it is ready to

be sent
▶ CPU: executes program instructions

▶ Has internal registers for exchanging data between
memory and IO devices

▶ The PC (points to the next instruction) and IR (contains a
fetched instruction) registers are used while executing a
program

CPU Registers

▶ Memory Address Register (MAR): specifies the address
in memory for the next read or write

▶ Memory Buffer Register (MBR): contains the data to be
written into memory or receives the data read from
memory

▶ IO Address Register (I/O AR): specifies a particular I/O
device

▶ IO Buffer Register (I/O BR): exchange of data between
the I/O module and the CPU

Interconnection for Components

Interconnection Structures: collection of paths connecting
the various modules in a computer

▶ Memory: receives/sends data,
receives addresses and control
signals (read, write, timing)

▶ CPU: reads instructions and
data, writes out data after
processing, sends signals to
other units, receives and acts on
interrupts

I/O Connection

▶ Treated as memory
▶ Input

▶ Receives data from peripheral
▶ Sends data to computer

▶ Output
▶ Receives data from computer
▶ Sends data to peripheral

▶ Receives control signals from computer
▶ Sends control signals to peripherals
▶ Receives peripheral addresses from computer
▶ Sends interrupt signals

Buses

A bus is a communication pathway among devices. It has a
shared transmission medium allowing one device transmission
at a time
A bus can have many lines or pathways categorized as:
▶ Data bus: data lines that move data among system

modules
▶ Address bus: designate the source or destination of the

data on the data bus
▶ Control bus: control the access to and the use of the data

and address lines

Control Signals

Control signals transmit both command and timing information
among system modules
Timing signals: indicate the validity of data and address
information
Command signals: specify operations to be performed

Control Signals

Typical control signals:
▶ Memory write: causes data on the bus to be written into

the addressed location
▶ Memory read: causes data from the addressed location to

be placed on the bus
▶ I/O write: causes data on the bus to be output to the

addressed I/O port
▶ I/O read: causes data from the addressed I/O port to be

placed on the bus
▶ Transfer ACK: indicates that data have been accepted

from or placed on the bus

Control Signals ..

▶ Bus request: indicates that a module needs to gain
control of the bus

▶ Bus grant: indicates that a requesting module has been
granted control of the bus

▶ Interrupt request: indicates that an interrupt is pending
▶ Interrupt ACK: acknowledges that the pending interrupt

has been recognized
▶ Clock: is used to synchronize operations
▶ Reset: initializes all modules

Point-to-point Interconnect

Point-to-point interconnect has lower latency, higher data rate,
and better scalability compared to the shared bus
Main characteristics of QPI1 and other point-to-point
interconnect schemes:
▶ Multiple direct connections: Multiple components within

the system enjoy direct pairwise connections to other
components. This eliminates the need for arbitration found
in shared transmission systems

▶ Layered protocol architecture: use a layered protocol
architecture as in network environments, rather than the
simple use of control signals found in shared bus
arrangements

▶ Packetized data transfer: Data is sent as a sequence of
packets (not raw bits), each of which includes control
headers and error control codes

1Intel’s QuickPath Interconnect (QPI)

Example QPI Four-layer Protocol Architecture

▶ Physical: Consists of the actual wires carrying the signals,
as well as circuitry and logic to support ancillary features

▶ Link: Responsible for reliable transmission and flow
control

▶ Routing: Provides the framework for directing packets
through the fabric

▶ Protocol: The high-level set of rules for exchanging
packets2 of data between devices

2A packet is comprised of an integral number of Flits

PCI Express

▶ The peripheral component interconnect (PCI) is a
processor-independent bus

▶ It functions as a mezzanine or peripheral bus
▶ It delivers better system performance for high-speed I/O

subsystems
▶ The bus-based PCI scheme does not keep pace with the

data rate demands of attached devices
▶ An improved a point-to-point interconnect PCI Express

(PCIe) was developed

PCI Express Architecture

A chipset connects the processor and memory subsystem to
the PCI Express switch fabric comprising one or more PCIe
and PCIe switch devices

▶ Switch: manages multiple PCIe
streams

▶ PCIe endpoint: an I/O device or
controller that implements PCIe

▶ Legacy endpoint: intended for
existing designs that have been
migrated to PCI Express

▶ PCIe/PCI bridge: allows older
PCI devices to be connected to
PCIe-based systems

PCI Protocol Architecture Layers

▶ Physical: consists of the actual wires carrying the signals,
as well as circuitry and logic to support ancillary features

▶ Data link: Is responsible for reliable transmission and flow
control. Data packets generated and consumed by the DLL
are called Data Link Layer Packets (DLLPs)

▶ Transaction: generates and consumes data packets used
to implement load/ store data transfer mechanisms and
also manages the flow control of those packets between
the two components on a link. Data packets generated and
consumed by the TL are called Transaction Layer Packets
(TLPs)

	Top Level View

