
Instruction-Level Parallelism and Superscalar
Processors

Chapter 16

Joannah Nanjekye

August 06, 2024



Pipeline Performance with Stalls

From Lecture 17 we can derive more performance equations:



Pipeline Performance with Stalls

Pipelining is decreasing the CPI or the clock cycle time. The
ideal CPI on a pipelined processor is always 1

If we ignore the cycle time overhead of pipelining and assume
the stages are perfectly balanced, then the cycle time of the
two processors can be equal:



Pipeline Performance with Stalls

If all instructions take the same number of cycles, which must
also equal the number of pipeline stages, then the unpipelined
CPI is equal to the depth of the pipeline:

If pipelining improves the clock cycle time, then we can
calculate the CPI of the unpipelined processor, as well as the
pipelined processor:



▶ The instruction execution rate, CPI, will be less than 1, so
instead we use IPC: instructions per clock cycle

▶ E.g., a 3 GHz, four-way multiple-issue processor can
execute at a peak rate of 12 billion instructions per second
with a best case CPI of 0.25 or a best case IPC of 4

If the datapath has a five stage pipeline, how many instructions
are active in the pipeline at any given time?



Scalar processor

▶ A single pipelined functional unit exists for operations

▶ Pipelines allow for performance increases through parallelism

▶ Parallelism is by enabling multiple instructions to be at different
stages of the pipeline



Superscalar processor
A processor that is designed to:

▶ Improve the performance of the execution of scalar instructions

▶ To have multiple functional units, implemented as a pipeline

▶ To execute instructions in different pipelines independently and
concurrently



Superscalar versus Superpipelined



Constraints

▶ True data dependency

▶ Procedural dependency

▶ Resource conflicts

▶ Output dependency

▶ Antidependency



Data Hazards

True dependency (RAW)
Later instruction using a value (not yet) produced by an earlier
instruction

Antidependencies (WAR)
Later instruction (that executes earlier) produces a data value
that destroys a data value used as a source in an earlier
instruction (that executes later)

Output dependency (WAW)
Two instructions write the same register or memory location



Example

Find all data dependencies in this instruction sequence



Procedural Dependencies

Presence of branches complicates pipeline operation

▶ Depend on whether the branch was taken or not taken

▶ This cannot be determined until the branch is executed

▶ This type of procedural dependency also affects a scalar
pipeline



Resource Conflicts

Instruction competition for the same resource at the same time

▶ Resource examples include; bus, memory, registers, ALU

▶ Resource conflict exhibits similar behavior to a data
dependency

▶ Resource conflicts can be overcome by duplication of resources

▶ While a true data dependency cannot be eliminated



Instruction-level Parallelism (ILP)
A measure of the average number of instructions in a program
that a processor might be able to execute at the same time

▶ Mostly determined by the number of true (data) dependencies
and procedural (control) dependencies

▶ These are also dependent on the instruction set architecture and
on the application

▶ And operation latency

▶ The time until the result of an instruction is available for use as
an operand in a subsequent instruction



Machine Parallelism

A measure of the ability of the processor to take advantage of
the ILP of the program. Determined by:

▶ The number of instructions that can be fetched and executed at
the same time

▶ The speed and sophistication of the mechanisms that the
processor uses to find independent instructions



Instruction Issue Policy

Look ahead of the current point of execution to locate
instructions that can be brought into the pipeline and executed

▶ Instruction issue: process of initiating instruction execution in
the processor’s functional units

▶ Instruction issue policy: Mechanism to issue instructions

Three kinds of ordering are important:

▶ Instructions are fetched

▶ Instructions are executed

▶ Instructions update the contents of register and memory
locations

The result must be correct



Multiple-Issue Processor Styles

▶ Static multiple-issue processors:

▶ Decisions on which instructions to execute simultaneously are
being made statically (at compile time by the compiler)

▶ Fast runtime

▶ Limited performance (variable values available when the
program is running)

▶ Dynamic multiple-issue processors (superscalar)

▶ Decisions on which instructions to execute simultaneously (in
the range of 2 to 8) are being made dynamically (at run time by
the hardware)

▶ Hardware penalty

▶ Complete knowledge on the program



Techniques

▶ Hardware

▶ Out-of-order issue

▶ Register Renaming

▶ Software

▶ Loop unrolling

▶ Instruction scheduling



Superscalar Instruction Issue Policies

They can be grouped into the following categories:

▶ In-order issue with in-order completion

▶ In-order issue with out-of-order completion

▶ Out-of-order issue with out-of-order completion



In-order issue with in-order completion

▶ The simplest policy

▶ Issue instructions respecting original sequential execution
(in-order issue)

▶ And write the results in the same order (in-order completion)

▶ This policy is used as baseline for comparing other robust
approaches



In-order issue with in-order completion

▶ Instructions fetched two at a time

▶ The next instructions must wait until the pair of decoder pipeline
stages has cleared

▶ Instruction issuing is stalled by a functional unit conflict or delay



In-order issue with out-of-order completion

▶ Used in scalar RISC processors to improve the performance

▶ For instructions that require multiple cycles

▶ Any number of instructions may be in the execution stage

▶ Instruction issuing is stalled by a resource conflict, a data
dependency, or a procedural dependency



In-order issue with out-of-order completion

▶ Instruction I2 is allowed to run to completion prior to I1

▶ This allows I3 to be completed earlier, with the net result of a
savings of one cycle

▶ Requires more complex instruction issue logic than in-order
completion

▶ Difficult to deal with interrupts and exceptions



Out-of-order issue with out-of-order completion

▶ In-order issue stalls decoding until a conflict is resolved

▶ Requires to decouple the decode and execute stages of the
pipeline

▶ Achieved with a buffer, instruction window



Buffer Operation
▶ Instructions are fetched and decoded if buffer is not full

▶ Instructions are moved to the execute stage if a functional unit
is available

▶ Instruction is issued if:

▶ It needs the available functional unit
▶ There are no conflicts or dependencies



Out-of-order issue with out-of-order completion

▶ It is possible to issue instruction I6 ahead of I5 (recall that I5
depends on I4, but I6 does not)

▶ The pipeline also stalls if there is a dependency or conflict

▶ Chances of stalling are less since more instructions are
available for issuing

▶ Out-of-order buffer can be supported with a reorder buffer



Register Renaming

Problem: Values in registers cannot be fully known at each
point in time

▶ Main issues are WAW dependencies and WAR dependencies

▶ Differ from RAW data dependencies and resource conflicts,
which reflect the flow of data

▶ WAW dependencies and WAR dependencies are due to values
in registers nolonger reflecting the sequence of values dictated
by the program flow



Resolve Storage Conflicts

Register Renaming: The processor renames the original
register identifier in the instruction to a new register (one not in
the visible register set)

▶ The hardware that does renaming assigns a ”replacement”
register from a pool of free registers

▶ Releases it back to the pool when its value is superseded and
there are no outstanding references to it



Resolve Control Dependency

Speculation: Allow execution of future instrâs that (may)
depend on the speculated instruction

▶ Speculate on the outcome of a conditional branch branch
prediction

▶ Speculate that a store (for which we donât yet know the
address) that precedes a load does not refer to the same
address, allowing the load to be scheduled before the store
load speculation

Ignore and/or buffer exceptions created by speculatively
executed instructions until it is clear that they should really
occur



Superscalar Execution Overview



Superscalar Execution Overview

▶ The program to be executed consists of a linear sequence of
instructions

▶ This is the static program as written by the programmer or
generated by the compiler



Superscalar Execution Overview

▶ Form a dynamic stream of instructions

▶ This stream is examined for dependencies, and the processor
may remove artificial dependencies



Superscalar Execution Overview

▶ Instructions are dispatched into a window of execution

▶ Instructions are structured according to their dependencies



Superscalar Execution Overview

▶ Instructions are executed in an order determined by:

▶ True data dependencies

▶ Hardware resource availability



Superscalar Execution Overview

▶ Instructions are put back into sequential order

▶ Their results are recorded



Sources Acknowledgement

▶ Course Textbook

▶ http://web.ist.utl.pt/luis.tarrataca/classes/computer architecture/
Chapter16-
InstructionLevelParallelismAndSuperscalarProcessors.pdf

▶ http://www.cse.cuhk.edu.hk/ byu/CENG3420/2023Spring/
slides/Lec16-ILP.pdf

▶ https://www.slideshare.net/slideshow/pipelining-and-ilp-
instruction-level-parallelism/72975241


