
Reduced Instruction Set Computers (RISC)
Chapter 15

Joannah Nanjekye

August 01, 2024



Key Advances in Computers

▶ The family concept
▶ IBM System/360 1964
▶ DEC PDP-8
▶ Separates architecture from implementation

▶ Microprogrammed control unit
▶ Idea by Wilkes 1951
▶ Produced by IBM S/360 1964
▶ Simplifies design and implementation of control unit

▶ Cache memory
▶ BM S/360 model 85 1969



Key Advances in Computers

▶ Solid State RAM
▶ See lecture slides on memory

▶ Microprocessors
▶ Intel 4004 1971

▶ Pipelining
▶ Introduces parallelism into fetch execute cycle

▶ Vector processing
▶ Explicit parallelism

▶ Multiple processors
▶ RISC design



RISC

▶ Reduced Instruction Set Computer
▶ A dramatic departure from historical architectures

▶ Key features
▶ Large number of general purpose registers
▶ Or use of compiler technology to optimize register use
▶ Limited and simple instruction set
▶ Emphasis on optimizing the instruction pipeline



CISC

▶ Complex Instruction Set Computer
▶ Complexity led to:

▶ Large instruction sets
▶ More addressing modes
▶ Hardware implementations of HLL statements



CISC and RISC Processors



Instruction Execution Characteristics

1. Operations performed
▶ Determine the functions to be performed by the processor

and its interaction with memory
2. Operands used

▶ The types of operands and the frequency of their use
determine the memory organization for storing them and
the addressing modes for accessing them

3. Execution sequencing
▶ Determines the control and pipeline organization

4. Semantic gap
▶ The difference between the operations provided in HLLs

and those provided in computer architecture
5. High-level languages (HLLs)

▶ Convenience and abstraction for programmers



Operations

▶ Assignments
▶ Movement of data

▶ Conditional statements (IF, LOOP)
▶ Sequence control

▶ Procedure call-return is very time consuming
▶ Some HLL instructions lead to many machine code

operations



Frequency of HLL Operations



Operands

▶ Mainly local scalar variables
▶ Optimization priotize accessing local variables



Procedure Calls

▶ Very time consuming operations
▶ Depends on number of parameters passed

▶ Great majority use few parameters
▶ 90% use three or fewer

▶ As well as Procedure invocation depth
▶ Fairly shallow for most programs

▶ Most variables are local and scalar
▶ cache or registers



Implications

▶ HLLs better supported by optimizing performance of the
most time-consuming features

▶ Not close instruction set architectures



Operands and Registers

▶ Quick access to operands is desirable
▶ Many assignment statements
▶ Significant number of operand accesses per HLL statement

▶ Register storage is fastest available storage
▶ Addresses are much shorter than memory or cache
▶ Aim to keep operands in registers as much as possible



Large Register File

1. Hardware approach
▶ Have more registers
▶ Thus more variables will be in registers

2. Software approach
▶ Require compiler to allocate registers
▶ Allocate based on most used variables in a given time
▶ Requires sophisticated program analysis to allocate

registers efficiently
▶ Can be very difficult on architectures such x86 where

registers have special purposes



Register Windows

▶ Because most calls use only a few parameters and call
depth is typically shallow

▶ One window of registers is visible and is addressable as if
it were the only set of registers

▶ We can divide a register set into 3 areas:
1. Parameter registers
2. Local registers
3. Temporary registers



Depth of Call Stack

▶ To handle any possible pattern of call and return, the
number of register windows would have to be unbounded

▶ Instead, when call depth exceeds the number of available
register windows, older activations have to be saved in
memory and restored later when call depth decreases

▶ A circular buffer organization can make this reasonably
efficient



Circular Buffer



Circular Buffer Operation

▶ When a call is made, a current window pointer is moved to
show the currently active register window

▶ A saved window pointer indicates where the next saved
window should restore

▶ When a CALL causes all windows to be in use (CWP is
incremented and becomes equal to SWP), an interrupt is
generated and the oldest window (the one furthest back in
the call nesting) is saved to memory

▶ When a Return decrements CWP and it becomes equal to
SWP an interrupt is generated and registers are restored
from memory



Global Variables

▶ Allocate all globals to memory and never use registers to
store
▶ Easy to implement
▶ Inefficient for frequently accessed global variables

▶ Alternative is to incorporate a set of global registers in the
processor
▶ Increases hardware (handle register split) and compiler

complexity (linker has to decide)
▶ A few globals can be stored in registers



Registers vs. Cache



Referencing a Scalar - Window Based Register File



Referencing a Scalar - Cache



Registers vs. Cache

It should be clear that even if the cache is as fast as the register
file, the access time will be considerably longer1

▶ Not obvious
▶ But register files have simpler and therefore faster

addressing
▶ When L1 (and possibly L2) cache are on-board, cache

memory access is almost as fast as register access

1Phrasing a bit weird here



Compiler Based Register Optimization

▶ Goal of optimizing compiler is to maximize register usage
and minimize memory accesses

▶ Approach:
1. Assign a symbolic or virtual register to each candidate

variable
2. Map (unlimited) symbolic registers to real registers
3. Symbolic registers with usage that does not overlap in time

can share real registers
4. If you run out of real registers some variables use memory
5. One commonly used algorithm is the graph coloring

algorithm



Register Interference
▶ We have six variables (symbolic registers) but only three

actual registers available
▶ Analyze variable references over time to build a register

interference graph



Graph Coloring

▶ Given a graph of nodes and edges:
▶ Assign a color to each node
▶ Adjacent nodes have different colors
▶ Use minimum number of colors

▶ Nodes are symbolic registers
▶ Two registers that live in the same program fragment are

joined by an edge
▶ Color the graph with n colors, where n is the number of real

registers be colored are allocated in memory



Graph Coloring Approach



Why CISC

▶ Compiler simplification
▶ But complex machine instructions are harder to exploit well
▶ Machine code optimization is more difficult

▶ Smaller programs?
▶ Program takes up less memory
▶ May not occupy less bits, just look shorter in symbolic form

▶ Faster programs?
▶ CISC machines need a more complex control unit and/or

larger microprogram control store so simple instructions
may take longer to execute



RISC Characteristics

1. One instruction per machine cycle
▶ Simple hardwired instructions need little or no microcode

2. Register to register operations
▶ Reduces variations in instruction set
▶ Memory access Load and Store only

3. Few, simple addressing modes
▶ Complex addressing modes can by synthesized in software

from simpler ones
4. Few, simple instruction formats

▶ Fixed length instruction format
▶ Aligned on word boundaries
▶ Fixed field locations especially the opcode
▶ Simpler decode circuitry



RISC vs CISC

1. Not clear cut distinction
▶ Many studies fail to distinguish the effect of a large register

file from the effect of RISC instruction set
2. Many designs borrow from both philosophies

▶ E.g. PowerPC and Pentium
▶ RISC and CISC appear to be converging



Detailed RISC Characteristics

1. A single instruction size, typically 4 bytes
2. Small number of addressing modes
3. No memory-indirect addressing
4. No operations combine load/store with arithmetic
5. No more than one memory addressed operand per

instruction
6. Does not support arbitrary (byte) alignment of data for

load/store
7. Max number of MMU uses for a data address is 1
8. At least 5 bits for integer register specifier (32 registers)
9. At least 4 bits for FP register specifier (16 registers)



RISC Pipelining

▶ Two phases of execution
▶ I: Instruction fetch
▶ E: Execute (ALU operation with register input and output)

▶ For load and store
▶ I: Instruction fetch
▶ E: Execute (Calculate memory address)
▶ D: Memory (Register to memory or memory to register

operation)
▶ Execute can be further subdivided

▶ E1: Register file read
▶ E2: ALU operation and register write



Sequential Execution 2-Stage Pipeline

In the 2 stage pipeline I and E (Fetch and Execute) can be
performed in parallel but not D (reg/mem operation)
▶ Single port memory allows only one access per stage
▶ Insert a WAIT stage where D operations occur
▶ Use a No-op (NOOP or NOP) to keep the pipeline full

when branch executes (minimizes circuitry needed to
handle pipeline stall)



3-Stage and 4-Stage Pipeline

▶ Permitting 2 memory accesses per stage allows 3-stage
pipeline with almost 3x speedup

▶ Divide E phase into two smaller phases for more even
timing in 4 stage pipeline

▶ Use NOPs for pipeline delays (e.g., data dependencies)



Pipelining Optimizations

1. Delayed branch
2. Delayed Load
3. Loop Unrolling



Delayed Branch

▶ Does not take effect until after execution of following
instruction

▶ This following instruction is the delay slot



Use of Delayed Branch



Delayed Load

▶ Register to be target is locked by processor
▶ Continue execution of instruction stream until register

required
▶ Idle until load is complete
▶ Re-arranging instructions can allow useful work while

loading



Loop Unrolling
▶ Replicate body of loop a number of times
▶ Iterate loop fewer times
▶ Reduces loop overhead
▶ Increases instruction parallelism
▶ Improved register, data cache, or TLB locality



Loop Unrolling
▶ Second assignment performed while first is being stored

and loop variable updated
▶ If array elements are in registers then locality of reference

will improve because a[I] and a[I+1] are used twice,
reducing loads per iteration from 3 to 2



Sources Acknowledgement

▶ http://aturing.umcs.maine.edu/˜meadow/
courses/cos335/COA13.pdf

▶ https:
//en.wikipedia.org/wiki/Loop_unrolling

http://aturing.umcs.maine.edu/~meadow/courses/cos335/COA13.pdf
http://aturing.umcs.maine.edu/~meadow/courses/cos335/COA13.pdf
https://en.wikipedia.org/wiki/Loop_unrolling
https://en.wikipedia.org/wiki/Loop_unrolling

