
Instruction Cycle and Pipelining
Chapter 14

Joannah Nanjekye

July 31, 2024



Administrative Things

▶ Exam Scope: my slides
▶ Next Lab: Revision Lab
▶ Quiz 2 instructions:

▶ Open book, no internet
▶ No group discussion
▶ Use lecture notes, your notes and the text book
▶ Don’t just throw a result for a computation (misunderstood

as copying)
▶ Office hours by appointment only from now
▶ If you miss class a lot, first ask a friend before emailing me



Instruction Cycle with Indirect Stage

We need an Indirect Cycle for indirect addressing operands



State Diagram



Data Flow: Fetch Cycle

▶ PC contains address of the next
instruction

▶ Address moved to MAR
▶ Address placed on address bus
▶ Control unit requests a memory

read
▶ Result is placed on the data bus
▶ There is a copy to MBR then IR
▶ PC is incremented by 1



Data Flow: Indirect Cycle

▶ IR is examined
▶ If indirect addressing, the indirect

cycle is performed
▶ Right most N bits of MBR

transferred to MAR
▶ Control unit requests a memory

read
▶ Result (address of operand)

moved to MBR



Data Flow: Execute Cycle

▶ Depends on the instruction being executed
▶ A typical workflow includes:

▶ Register transfers
▶ Memory access
▶ Input/output
▶ ALU operations



Data Flow: Interrupt Cycle

▶ IR is examined
▶ PC persisted to allow resumption

after interrupt
▶ Contents of PC copied to MBR
▶ Special memory location (e.g

stack pointer) is loaded to MAR
▶ MBR written to memory

▶ PC loaded with address of ISR
▶ Next instruction can be fetched



The Pipelining Strategy

▶ Tasks are subdivided into subtasks
▶ A pipeline stage is associated with each subtask
▶ The same amount of time is allocated to each subtask
▶ The first stage accepts input while the last stage delivers

the output
▶ The basic pipeline is synchronous



Principles of Instruction Pipelining



Instruction Pipelining

▶ An organizational optimization approach for the CPU
▶ There are 6 stages for instruction processing

▶ Fetch instruction (FI)
▶ Decode instruction (DI)
▶ Calculate operands (CO)
▶ Fetch operands (FO)
▶ Execute instruction (EI)
▶ Write operand / result (WO)

▶ Execution involves an overlap of instructions



Timing of Instruction Pipelining



Assumptions

▶ Each instruction goes through all the 6 stages
▶ Not true e.g., no WO for ’LOAD’
▶ Timing is setup for simplifying pipeline hardware

▶ No potential hazards
▶ Data dependency
▶ Branch
▶ Interrupt

▶ No memory conflicts
▶ Most systems don’t allow simultaneous access
▶ Desired data maybe else where e.g cache etc



Pipeline Performance

▶ Cycle time, τ
▶ Time available for each stage to accomplish the required

operations
▶ Determined by the worst-case processing time of the

longest stage
▶ Total time to execute n instructions

▶ k, number of stages in the pipeline
▶ Require K cycles to complete the first instruction
▶ The remaining n − 1 instructions require n − 1 cycles



Pipeline Performance ..

▶ Speedup Factor
▶ Compared to the execution time without pipeline:
▶ The higher the number of stages, the bigger the potential

speedup

▶ Throughput
▶ Refereed to as the ”repetition rate”
▶ The shortest possible time interval between subsequent

independent instructions in the pipeline
▶ When the basic pipeline is full, throughput is 1 cycle



Example

Consider a simple 6 stage pipeline executing a basic code
block containing 20 instructions. Assume the pipeline clock
cycle is 10ns and there is no potential hazard.

1. What is the total time to execute this block of code
T = (k + (n − 1))× c
k = 6,n = 20, c = 10ns
T = (6 + (20 − 1))× 10ns
T = 250ns

2. What is the repetition rate of this pipeline for this basic
block
1 cycle

3. What is the speedup factor
Time without pipelining = n× k × c = 6×20×10 = 1200ns
Speedup = 1200/250



Pipeline Hazards

▶ A pipeline hazard occurs when a pipeline or some portion
of the pipeline must stall due to conditions that do not
permit further execution

▶ Such a pipeline stall is also called a pipeline bubble
▶ Types of hazards:

▶ Resource
▶ Data
▶ Control



Resource Hazards

▶ Also known as structural hazards
▶ Conflict for use of a resource
▶ Solution:

▶ Hence pipelined data paths require separate
instruction/data memories

▶ Or separate instruction/data caches



Resource Hazards ..



Data Hazards



Types of Data Hazards

Three main categories
▶ Read after write (RAW)
▶ Read after read (RAR)
▶ Write after read (WAR)
▶ Write after write (WAW)



RAW



RAW Cases



RAR



WAW



WAR



Solution: Forwarding

▶ Use the result when it is computed
▶ Dont wait for it to be stored in a register
▶ Requires extra connections in the data path



Pipeline Stall

▶ Cant always use forwarding, hence stall
▶ Cant forward backward in time, if value isnt computed
▶ Instead delay or stall the pipeline



NOP Insertion



Code Scheduling to Avoid Stall

▶ Reorder code to avoid use of load result in the next
instruction



Control Hazard



Stall on Branch

▶ Wait until the branch outcome is determined before next
instruction fetch



Branch Prediction

▶ Predict never taken
▶ Predict always taken
▶ Predict by opecode
▶ Taken/Not taken switch
▶ he branch history table



NOP Forcing



NOP Insertion



Delayed Branch



Delayed Branch



Sources Acknowledgement

▶ https://slideplayer.com/slide/8447683/
▶ https://slideplayer.com/slide/5163573/
▶ https://slideplayer.com/slide/12934085/
▶ https://slideplayer.com/slide/3393101/


