
Cache Performance and Basic Optimization

Joannah Nanjekye

July 22, 2024

Direct-Mapping Example

A cache is direct-mapped and has 64 KB data. Each block
contains 32 bytes. The address is 32 bits wide. What are the
sizes of the tag, index, and block offset fields?
▶ bits in block offset = 5, each block contains 32 = 25 bytes
▶ blocks in cache = 64 × 1024 / 32 = 2048 blocks
▶ bits in index field = 11, there are 211 blocks
▶ bits in tag field = 32 - 5 - 11 = 16

Set-associative Example

A cache is 4-way set-associative and has 64 KB data. Each
block contains 32 bytes. The address is 32 bits wide. What are
the sizes of the tag, index, and block offset fields?
▶ bits in block offset = 5, each block contains 32 = 25 bytes
▶ blocks in cache = 64 × 1024 / 32 = 2048, 211

▶ sets in cache = 2048 / 4 = 512, 29 sets (a set is 4 blocks
kept in the cache for each index)

▶ bits in index field = 9
▶ bits in tag field = 32 - 5 - 9 = 18

Average Memory Access Time (AMAT)

AMAT = Hit Time + Miss Rate × Miss Penalty
AMAT = Thit(L1) + Miss%(L1)× T (Mem)
Assume:
▶ Cache Hit = 3 cycles
▶ Miss rate = 20%, Miss penalty = 500 cycles

Then:
▶ AMAT = 3 + 0.2 × 500 = 103 cycles

CPU Time

CPU time = (CPU execution clock cycles + Memory −
stall clock cycles)× Clock cycle time

Memory − stall clock cycles =
Read − stall cycles + Write − stall cycles

Read − stall cycles =
Reads

Program × Read miss rate × Read miss penalty

Write − stall cycles = (Reads
Program × Write miss rate ×

Write miss penalty) + Write buffer stall

Combining Read and Write Stall Cycles

Using a single miss rate and miss penalty, the write and read
miss penalties are the same, i.e. time to fetch a block from
main memory:

Memory − stall clock cycles =
Memory accesses

Program × Miss rate × Miss penalty

Memory−stall clock cycles = Instructions
Program x Miss

Instruction×Miss penalty

Example: Cache Performance

Consider:
▶ Instruction miss rate = 2%
▶ Data miss rate = 4%
▶ CPI = 2 (without memory stalls)
▶ Miss penalty = 40 cycles
▶ 36% of instructions are load/store

Determine how much faster a machine would run with a perfect
cache that never missed1

▶ Instruction miss cycles = I x 0.02 x 40 = 0.80 I
▶ Data miss cycles = I x 0.36 x 0.04 x 40 = 0.58 I
▶ Total memory stall cycles = 0.80 I + 0.58 I = 1.38 I
▶ CPIstall = 2 + 1.38 = 3.38

CPU timestalls
CPU timeperfect cache

= I×CPIstall xClock cycle
IxCPIperfect xClock cycle = 3.38

2 = 1.69

1I = number of instructions

Example: Increased Clock Rate

Assume the clock rate of the machine used in this example is
doubled but the memory speed, cache misses, and miss rate
are same. How much faster the machine be with the faster
clock?
▶ New miss penalty = 2x40=80 (clock rate is doubled)
▶ Total memory stall cycles = (0.02 x 80) + 0.36 x (0.04 x 80)

= 2.75
▶ CPIfastclock = 2 + 2.75 = 4.75clock cycles

CPU timeslowclock
CPU timefastclock

= I×CPIslowclock×Clock cycle
IxCPIfastclock x Clockcycle

2

= 3.38x2
4.75 = 1.41

Example: AMAT direct and Set Associative Mapping

▶ If a direct mapped cache has a hit rate of 95%, a hit time of
4 ns, and a miss penalty of 100 ns, what is the AMAT?
▶ AMAT = Hit time + Miss rate x Miss penalty = 4 + 0.05 x 100

= 9 ns
▶ If replacing the cache with a 2-way set associative

increases the hit rate to 97%, but increases the hit time to
5 ns, what is the new AMAT?
▶ AMAT = Hit time + Miss rate x Miss penalty = 5 + 0.03 x 100

= 8 ns

Example: Split and Unified Cache

Consider:
▶ Previous miss rates
▶ Miss penalty is 50 cycles
▶ Hit time is 1 cycle
▶ 75% of the total memory accesses for instructions and

25% of the total memory accesses for data
▶ On the unified cache, a load or store hit takes an extra

cycle, since there is only one port for instructions and data

Example: Split and Unified Cache

AMAT for the split cache:
▶ AMAT = 75% x (1 + 0.64% x 50) + 25% (1 + 6.47% x 50) =

2.05
AMAT for the unified cache:
▶ AMAT = 75% x (1 + 1.99% x 50) + 25% x (2 + 1.99% x 50)

= 2.24
A unified cache has a longer AMAT, with a lower miss rate, due
to conflicts for instruction and data hazards

Summary of Performance Equations

Basic Cache Optimization Techniques

Basic Cache Optimizations

1. Reduce Miss Rate via a Larger Block Size

1. Reduce Miss Rate via a Larger Block Size

A larger block size can increase the miss penalty

Example

Assume the memory system takes 80 clock cycles of overhead
and then delivers 16 bytes every 2 block cycles. Then, it can
supply 16 bytes in 82 clock cycles, 32 bytes in 84 clock cycles
and so forth. Which block size has the smallest average
memory access time for each cache size in the figures on the
previous slides?
▶ If we assume the hit time is 1 clock cycle independent of

block size, then the access time for a 16-byte block in a 4
KB cache is:
▶ 1 + (8.57%× 82) = 8.027 clock cycles

▶ For a 256-byte block in 256 KB cache the average memory
access time is:
▶ 1 + (0.49%× 112) = 1.549clockcycles

2. Reduce Miss Rate via a Larger Cache
▶ Capacity misses reduce when the capacity of the cache

increases
▶ The hit time and cost can increase
▶ Instead use larger cache sizes for L2 and L3 off-chip

caches

3. Reduce Misses via Higher Associativity
▶ 2:1 Rule: Miss Rate DM cache size N = Miss Rate 2-way

cache size N/2
▶ Hit time for higher associative caches can be high and

involves complex circuits

Associativity and AMAT

Associativity can lead to Higher Access Time

4. Reduce Miss Penalty via Multilevel Caches

▶ Techniques:
▶ Make the cache faster to keep pace with the speed of CPUs
▶ Make the cache larger to overcome the widening gap

▶ L2 Equations:

LC Cache Example

▶ If a direct mapped cache has a hit rate of 95time of 4 ns,
and a miss penalty of 100 ns, what is the AMAT?
▶ AMAT = Hit time + Miss rate x Miss penalty = 4 + 0.05 x 100

= 9 ns
▶ If an L2 cache is added with a hit time of 20 ns and a hit

rate of 50%, what is the new AMAT?

AMAT = Hit TimeL1 + Miss RateL1x(Hit TimeL2 +
Miss RateL2xMiss PenaltyL2) = 4+ 0.05x(20+ 0.5x100) =
7.5 ns

Miss Rate in Multilevel Caches

▶ Local miss rate: misses in this cache divided by the total
number of memory accesses to this cache (Miss rateL1
,Miss rateL2)

▶ Global miss rate: misses in this cache divided by the total
number of memory accesses generated by the CPU (Miss
rateL1, Miss RateL1 x Miss RateL2)

5. Reduce Miss Penalty by Giving Priority to Read
Misses over Writes

▶ Perform any reads before any completion of writes
▶ Check write buffer contents before read; if no conflicts, let

the memory access continue
▶ Copy any dirty block to a write buffer, do the read, and then

do the write

6. Reduce Hit Time by Avoiding Address Translation
during Indexing of the Cache

Challenges of Virtual Cache

▶ Protection
▶ Context switching is required via flushing
▶ Aliases
▶ I/O use physical address

Advanced Cache Optimizations

▶ Reduce the hit time: Small and simple first-level caches
and way- prediction.

▶ Increase cache bandwidth: Pipelined caches,
multibanked caches, and nonblocking caches.

▶ Reduce the miss penalty: Critical word first and merging
write buffers

▶ Reduce the miss rate: Compiler optimizations
▶ Reduce the miss penalty or miss rate via parallelism:

Hardware prefetching and compiler prefetching

Resources

▶ https://www.info425.ece.mcgill.ca/
tutorials/T08-Caches.pdf

▶ https://passlab.github.io/CSCE513/notes/
lecture11_CacheAndPerformance.pdf

▶ https://passlab.github.io/CSCE513/notes/
lecture12_CacheOptimizations.pdf

https://www.info425.ece.mcgill.ca/tutorials/T08-Caches.pdf
https://www.info425.ece.mcgill.ca/tutorials/T08-Caches.pdf
https://passlab.github.io/CSCE513/notes/lecture11_CacheAndPerformance.pdf
https://passlab.github.io/CSCE513/notes/lecture11_CacheAndPerformance.pdf
https://passlab.github.io/CSCE513/notes/lecture12_CacheOptimizations.pdf
https://passlab.github.io/CSCE513/notes/lecture12_CacheOptimizations.pdf

