Concepts, Structure and Functions

Joannah Nanjekye

July 02, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Course Overview

Concepts

Functions

Structure

Syllabus

- Course resources will be available on D2L
- Also find them here: http://cs.unb.ca/~jnanjeky/teaching/cs3853
- Textbook: W. Stallings, Computer Organization and Architecture, Designing for Performance
- Instructor's website will have more resources than D2L

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Tentative Schedule

Week	Lecture Topic	Assignment	Quiz	Lab
1	Computer evolution and performance			~
2	Digital logic, Boolean Algebra, logic gates, combinational and sequential circuits	~		~
3	Processor architecture and structure	~	~	~
4	Memory architecture	~		~
5	Interfacing and I/O strategies	~		~
6	Parallelism and parallel organizations, performance enhancements		~	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Delivery

- Lectures
- Assignments (20%)
 - Four in total
 - No assignment in the first week

Read the plagiarism policy

- Quizzes (5%)
 - Two in total for 30 minutes
 - July 17 and 31
 - Read the plagiarism policy
- Labs (35%)
 - Wed. 13:00-15:50 PM Head Hall 301 Laboratory

(日) (日) (日) (日) (日) (日) (日)

- You may be asked to present your solution
- Group work is fine
- Individual submissions are required
- Read the plagiarism policy
- Final Exam (40%)
 - Monday, Aug. 12, 14:00 17:00

Delivery

- Email: jnanjeky@unb.ca
- Office Hours: Mon. 11:30 12:30 ITC 321
- You are free to use the internet for more resources

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Accommodations are handled by the registrar

Architecture refers to attributes of a system that are visible to a programmer These atributes have direct impact on the logical execution of a program

Organization refers to the operational units and their interconnections that realize the architectural specifications

Architecture Examples

- Instruction set
- Bit representation for data types
- I/O mechanisms
- Memory addressing techniques

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Organization Examples

- Control signals
- Interfaces
- Memory technology

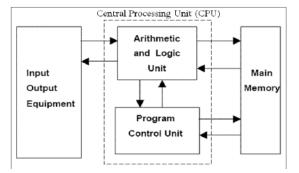
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Architecture vs. Organization

The distinction is still important

- Architecture is usually more stable:
 - IBM System/370 architecture
 - Remains in use in the IBM main frames

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>


- Organization keeps changing to appeal to:
 - Frequency of use
 - Speed
 - Cost and size

Structure: The way in which the components are interrelated

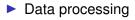
Function: The operation of each individual component as part of the structure

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

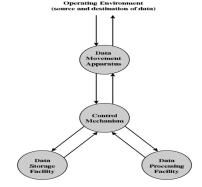
The Von Neumann Computer Model

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ● ●

Features of the Von Neumann Architecture


- 1. The most common computer model
- 2. This model uses the stored program concept where:
 - Memory holds the program
 - And the data the instructions act on
- 3. Memory is addressed by location numbers (addresses) not the type of the contents

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

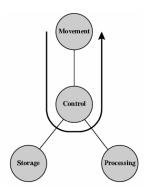

4. Execution and memory accessed is sequential/linear

Functions of a Computer

A computer has four core functions

- Data storage
- Data movement
- Control

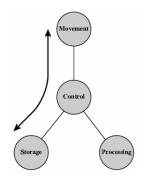
▲□▶▲□▶▲□▶▲□▶ □ のQ@


Control

- Monitors and manages computer's resources
- Maintains the operation of the functional components according to instructions
- Put simply the control unit orchestrates control of data processing, data storage, and data movement

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

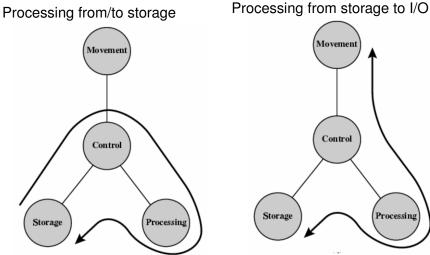
Data Movement


- The computer operating environment has data sources and destinations
- Data movement is in two forms:
 - input/output: when data is moved from a directly connected device, called a peripheral
 - Data Communication: when data is moved from a long distance or remote device

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Storage

- Data storage is useful for all forms of life times:
 - Short Term: temporary storage for immediate processing like temporary and loop variables
 - Long Term: non-temporary storage of data for subsequent access e.g. logging and data records

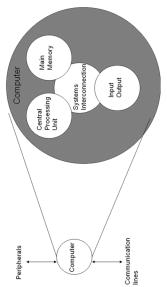

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Data Processing

- This is a core function of the computer
- Processing is achieved with arithmetic and logical operations performed on data
- There are different mechanisms of data processing

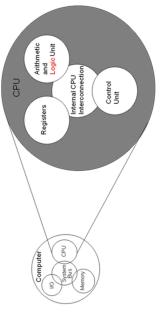
(ロ) (同) (三) (三) (三) (○) (○)

Data Processing

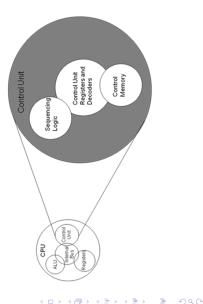


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Computer Structure


A computer has four main components

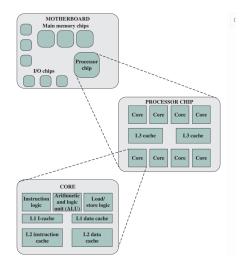
- Central Processing Unit (CPU): Known as a processor, responsible for controlling computer operations and performs data processing functions
- Main Memory: stores data
- Input/Output: Moves data between the computer and external environment
- System Interconnection: Achieves communication among CPU, main memory, and I/O, e.g. system bus


Central Processing Unit

- Control Unit: controls CPU operation which eventually controls the computer
- Arithmetic and Logic Unit (ALU): Performs data processing functions
- Registers: Provide CPU internal storage
- CPU Interconnection: Achieves communication among control unit, ALU and registers

Control Unit

- Implementation of the control unit can vary
- The approach used in this example is the *microprogramming* approach
- Where microinstructions define the functionality of the control unit



Multicore Structure

- Consists of multiple processors residing on a single chip, multicore computers
- Each processing unit is called a core
- Terminology:
 - Central Processing Unit (CPU): consists of ALU. control unit and registers. This unit fetches and executes instructions
 - Core: An individual processing unit on a processor unit. Equivalent to a CPU of a single-CPU computer
 - Processor: A physical piece of silicon consisting of one or several cores.

(ロ) (同) (三) (三) (三) (○) (○)

Components in a Multicore Structure

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

Cache

- Cache memory refers to multiple layers of memory between the processor and main memory
- Cache is faster and smaller than main memory
- It is used to to speed up main memory by storing data from main memory

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Cache memory is used to store data that is likely to be accessed in the near future
- There are multiple levels of cache:
 - level 1 (L1)
 - level 2 (L2)
 - level 3 (L3)
 - L (n) is smaller and faster than L (n + 1)

Components of a Core

- Instruction Logic: Fetches instructions, decodes the instructions to determine the operation and the memory locations of associated operands
- Arithmetic and Logic Unit (ALU): Executes the operation specified by an instruction

(ロ) (同) (三) (三) (三) (○) (○)

Load/Store Logic: Manages the movement of data between main memory via the cache

Lecture Resources

