
+

William Stallings 
Computer Organization 
and Architecture
10th Edition

© 2016 Pearson Education, Inc., Hoboken, 
NJ. All rights reserved.             



+ Chapter 16
Instruction-Level Parallelism 
and Superscalar Processors

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



S
u
p
e
r
s
c
a
l
a
r

Term first coined in 1987

Refers to a machine that 
is designed to improve 
the performance of the 

execution of scalar 
instructions

In most applications the 
bulk of the operations 

are on scalar quantities

Represents the next step 
in the evolution of high-
performance general-
purpose processors

Essence of the approach 
is the ability to execute 

instructions 
independently and 

concurrently in different 
pipelines

Concept can be further 
exploited by allowing 

instructions to be 
executed in an order 

different from the 
program order

O
v
e
r
v
i
e
w

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

Integer register file

Pipelined integer
functional unit

Memory 

Floating point
register file

Figure 16.1 Superscalar Organization Compared to Ordinary Scalar Organization

(a) Scalar organization

Pipelined floating-
point functional unit

Integer register file

Pipelined integer
functional units

Memory 

Floating point
register file

(b) Superscalar organization

Pipelined floating-
point functional units



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

Reference Speedup 
 [TJAD70] 1.8 
 [KUCK77] 8 
 [WEIS84] 1.58 
 [ACOS86] 2.7 
 [SOHI90] 1.8 
 [SMIT89] 2.3 
 [JOUP89b] 2.2 
 [LEE91] 7 

 

Table 16.1
Reported Speedups of 

Superscalar-Like Machines



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

Ifetch

0 1 2 3 4 5
Time in base cycles

Figure 16.2 Comparison of Superscalar and Superpipeline Approaches

Su
cc

es
siv

e 
in

st
ru

ct
io

ns

6 7 8 9

Key:
Decode

Execute
Write

Superpipelined

Superscalar

Simple 4-stage
pipeline



+ Constraints 

n Instruction level parallelism
n Refers to the degree to which the instructions of a program 

can be executed in parallel

n A combination of compiler based optimization and hardware 
techniques can be used to maximize instruction level 
parallelism

n Limitations:
n True data dependency

n Procedural dependency

n Resource conflicts

n Output dependency

n Antidependency

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

Ifetch

i0

i1

i0

i1

i0

i1/branch

i2

i3

i4

i5

i0

i1

0 1 2 3 4 5
Time in base cycles

Figure 16.3  Effect of Dependencies

6 7 8 9

Key:
Decode

Execute
Write

No Dependency

Data Dependency
(i1 uses data computee by i0)

Procedural Dependency

Resource Conflict
(i0 and i1 use the same
functional unit)



+
Design Issues

n Instruction level parallelism
n Instructions in a sequence are independent

n Execution can be overlapped

n Governed by data and procedural dependency

n Machine Parallelism
n Ability to take advantage of instruction level parallelism

n Governed by number of parallel pipelines

Instruction-Level Parallelism 
and Machine Parallelism

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

Instruction Issue Policy

•The order in which 
instructions are fetched

•The order in which 
instructions are executed

•The order in which 
instructions update the 
contents of register and 
memory locations

•In-order issue with in-order 
completion

•In-order issue with out-of-
order completion

•Out-of-order issue with out-
of-order completion

•Refers to the protocol used 
to issue instructions

•Instruction issue occurs 
when instruction moves 
from the decode stage of 
the pipeline to the first 
execute stage of the 
pipeline

•Refers to the process of 
initiating instruction 
execution in the processor’s 
functional units

Instruction issue Instruction issue 
policy

Three types of 
orderings are 

important:

Superscalar 
instruction issue 
policies can be 

grouped into the 
following 

categories:



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

 
Decode  Execute  Write  Cycle 

I1 I2         1 
I3 I4  I1 I2      2 
I3 I4  I1       3 
 I4    I3  I1 I2  4 

I5 I6    I4     5 
 I6   I5   I3 I4  6 
    I6      7 
       I5 I6  8 

 
(a) In-order issue and in-order completion 

 
 

Decode  Execute  Write  Cycle 
I1 I2         1 
I3 I4  I1 I2      2 
 I4  I1  I3  I2   3 

I5 I6    I4  I1 I3  4 
 I6   I5   I4   5 
    I6   I5   6 
       I6   7 

 
(b) In-order issue and out-of-order completion 

 
 
 

Decode  Window  Execute  Write  Cycle 
I1 I2           1 
I3 I4  I1,I2  I1 I2      2 
I5 I6  I3,I4  I1  I3  I2   3 
   I4,I5,I6   I6 I4  I1 I3  4 
   I5   I5   I4 I6  5 
         I5   6 

 
(c) Out-of-order issue and out-of-order completion 

 
 

Figure 16.4  Superscalar Instruction Issue and Completion Policies 



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

Figure 16.5 Organization for Out-of-Order Issue with Out-of-Order Completion

Fe
tc

h

Is
su

e

R
eg

ist
er

 re
ad

Ex
ec

ut
e

W
ri

te
 b

ac
k

D
ec

od
e

R
en

am
e

D
isp

at
ch

C
om

m
it

Buffer of instructions

In-order front end
Out-of-order execution



Register Renaming

Output and antidependencies occur 
because register contents may not 
reflect the correct ordering from the 
program

May result in a pipeline stall

Registers allocated dynamically

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

base +ld/st +alu +both
0

1

2

3

4

Speedup
Without renaming

base +ld/st +alu +both
0

1

2

3

4

Speedup
With renaming

8 16 32
Window size

(construction)

Figure 16.6  Speedups of Various Machine Organizations Without Procedural Dependencies



+ Branch Prediction

n Any high-performance pipelined machine must address the 
issue of dealing with branches

n Intel 80486 addressed the problem by fetching both the next 
sequential instruction after a branch and speculatively fetching 
the branch target instruction

n RISC machines:
n Delayed branch strategy was explored
n Processor always executes the single instruction that immediately 

follows the branch
n Keeps the pipeline full while the processor fetches a new instruction 

stream

n Superscalar machines:
n Delayed branch strategy has less appeal
n Have returned to pre-RISC techniques of branch prediction

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

static
program

instruction fetch
and  branch
prediction

instruction
dispatch

window of
execution

Figure 16.7  Conceptual Depiction of Superscalar Processing

instruction
issue

instruction
execution

instruction
reorder and

commit



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

Superscalar Implementation

Key elements:

• Instruction fetch strategies that simultaneously fetch 
multiple instruction

• Logic for determining true dependencies involving register 
values, and mechanisms for communicating these values to 
where they are needed during execution

• Mechanisms for initiating, or issuing, multiple instructions in 
parallel

• Resources for parallel execution of multiple instructions, 
including multiple pipelined functional units and memory 
hierarchies capable of simultaneously servicing multiple 
memory references

• Mechanisms for committing the process state in correct 
order



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

Figure 16.8  Intel Core Microarchitecture

Instruction Fetch and PreDecode

Scheduler/Reservation Station

Memory Ordering Buffer

Retirement Unit
(Re-Order Buffer)

Rename/Alloc

Decode

Instruction Queue

Integer ALU
Branch

MMX/SSE
FPmove

Port 0

Integer ALU
FPAdd

MMX/SSE
FPmove

Integer ALU
FPMul

MMX/SSE
FPmove

Load Unit Store  Unit

Microcode
ROM

Branch
Prediction

Unit

Shared L2 Cache
Up to 10.7 Gbps

FSB

Shared
Bus

Interface
Unit

L1 Data Cache and DTLB

L1 Instruction Cache

Port 1 Port 2 Port 3 Port 4



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

(a) Cache Parameters 
 

Cache Level Capacity Associativity 
(ways) 

Line Size 
(bytes) 

Write Update 
Policy 

L1 data 32 kB 8 64 Writeback 

L1 instruction 32 kB 8 N/A N/A 

L2 (shared)1 2, 4 MB 8 or 16 64 Writeback 

L2 (shared)2 3, 6 MB 12 or 24 64 Writeback 

L3 (shared)2 8, 12, 16 MB 15 64 Writeback 
Notes: 
1. Intel Core Microarchitecture 
2. Enhanced Intel Core Microarchitecture 

 
(b) Load/Store Performance 

 
Load Store 

Data Locality 
Latency Throughput Latency Throughput 

L1 data cache 3 clock cycles 1 clock cycles 2 clock cycles 3 clock cycles 

L1 data cache of 
the other core in 
modified state 

14 clock cycles + 
5.5 bus cycles 

14 clock cycles + 
5.5 bus cycles 

14 clock cycles + 
5.5 bus cycles 

N/A 

L2 cache 14 3 14 3 

Memory 14 clock cycles + 
5.5 bus cycles + 
memory latency 

Depends on bus 
read protocol 

14 clock cycles + 
5.5 bus cycles + 
memory latency 

Depends on bus 
read protocol 

 

Table 16.2

Cache/Memory 
Parameters 

and 
Performance 

of 
Processors 
Based on 
Intel Core 

Microarchitecture 

(Table can be found on
page 592 in the textbook.)



+
Front End

Consists of 
three major 
components:

Branch prediction unit 
(BPU)

Instruction fetch and 
predecode unit

Instruction queue and 
decode unit

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



+
Branch Prediction Unit

n Helps the instruction fetch unit fetch the most likely 
instruction to be executed by predicting the various branch 
types:
n Conditional
n Indirect
n Direct
n Call
n Return

n Uses dedicated hardware for each branch type

n Enables the processor to begin executing instructions long 
before the branch outcome is decided

n A branch target buffer (BTB) is maintained that caches 
information about recently encountered branch instructions

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

Instruction Fetch and Predecode Unit
Comprises: 

• The instruction translation lookaside buffer (ITLB)
• An instruction prefetcher
• The instruction cache
• The predecode logic

The predecode unit accepts the sixteen bytes from the instruction cache 
or prefetch buffers and carries out the following tasks:

• Determine the length of the instructions
• Decode all prefixes associated with instructions
• Mark various properties of instruction for the decoders

Predecode unit can write up to six instructions per cycle into the 
instruction queue

• If a fetch contains more than six instructions, the predecoder continues to decode up to 
six instructions per cycle until all instruction in the fetch are written to the instruction 
queue

• Subsequent fetches can only enter predecoding after the current fetch completes



+
Instruction Queue and Decode 
Unit

n Fetched instructions are placed in an instruction queue
n From there the decode unit scans the bytes to determine 

instruction boundaries

n The decoder translates each machine instruction into from one to 
four micro-ops

n Each of which is a 118-bit RISC instruction

n A few instructions require more than four micro-ops so they 
are transferred to microcode ROM, which contains the series 
of micro-ops (five or more) associated with a complex 
machine instruction

n The resulting micro-op sequence is delivered to the 
rename/allocator module

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



+
Out-of-Order Execution Logic

n This part of the processor reorders micro-ops to allow them to 
execute as quickly as their input operands are ready

n Allocate stage
n Allocates resources required for execution
n Performs the following functions:

n If a needed resource is unavailable for one of the three micro-ops 
arriving at the allocator during a clock cycle, the allocator stalls the 
pipeline

n Allocates a reorder buffer (ROB) entry which tracks the completion 
status of one of the 126 micro-ops that could be in process at any 
time

n Allocates one of the 128 integer or floating-point register entries 
for the result data value of the micro-op, and possibly a load or 
store buffer used to track one of the 48 loads or 24 stores in the 
machine pipeline

n Allocates an entry in one of the two micro-op queues in front of the 
instruction schedulers

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



+
Reorder Buffer (ROB)

Circular buffer that can 
hold up to 126 micro-ops 
and also contains the 128 
hardware registers

Each buffer entry consists 
of the following fields:
• State

• Indicates whether this micro-op is 
scheduled for execution, has been 
dispatched for execution, or has 
completed execution and is ready 
for retirement

• Memory address
• The address of the Pentium 

instruction that generated the 
micro-op

• Micro-op
• The actual operation

• Alias register
• If the micro-op references one of 

the 16 architectural registers, this 
entry redirects that reference to 
one of the 128 hardware registers

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



+

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

n Register renaming

n The rename stage remaps 
references to the 16 
architectural registers into a 
set of 128 physical registers

n Micro-op scheduling and 
dispatching
n Schedulers are responsible 

for retrieving micro-ops 
from the micro-op queues 
and dispatching these for 
execution

n Micro-op queuing
n After resource allocation and 

register renaming, micro-ops 
are placed in one of two 
micro-op queues, where they 
are held until there is room in 
the schedulers

n Integer and floating-point 
execution units

n The execution units retrieve 
values from the register files 
as well as from the L1 data 
cache



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

Prefetch
and

branch
prediction

Decode &
sequencer

Dependency
check and

issue

L1
cache

interface

TLB

L1
cache

interface

TLB

Instruction fetch Instruction decode

13-stage integer pipeline

10-stage SIMD pipeline

2 stages

3 stages 1 stage 6 stages

5 stages 6 stages

Instruction execute and Load/Store

Instruction register writeback

NEON register writeback

Replay

Branch mispredict

NEON
instruction

decode

Load and store
data queue

NEON unit

Figure 16.9  Architectural Block Diagram of ARM Cortex-A8

N
EO

N
 re

gi
st

er
 fi

le

A
rc

hi
te

ct
ur

al
re

gi
st

er
 fi

le

Load/store permute pipe

IEEE floating-point engine

non-IEEE FP MUL pipe

non-IEEE FP ADD pipe

Load/store
pipe 0 or 1

ALU pipe 1

MUL pipe 0

ALU pipe

Ingeger shift pipe

Integer MUL pipe

Integer ALU pipe

Arbitration
L2 cache

pipeline control

Write
buffer

Bus
interface
unit (BIU)

Fill and eviction
queue

Instruction, data, NEON and preload
engine buffers

L2
cache

L2 cache
data RAM

L2 cache
tag RAM

I-side
L1

RAM

D-side
L1

RAM



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

AGU

F0 F1 F2 D0

E0 E1 E2 E3 E4 E5

D1 D2 D3 D4
branch

mispredict

branch
mispredict

Decode
/seq

Dec
queue
read/
write

Score
board

+
issue
logic

Final
decode

Decode

Pending and
replay queue

(a) Instruction fetch pipeline (b) Instruction decode pipeline

(c) Instruction execute and load/store pipeline

Figure 16.10 ARM Cortex-A8 Integer Pipeline

Early
decode

Early
decode

Shift ALU/
multiply

pipe 0MUL
1

ALU

MUL
2

RAM
+

TLB

BTB
GHB
RS

12-
entry
fetch

queue

replay

replay

SAT

MUL
3

BP

ACC

WB

WB

Shift

INST 0

INST 1
ALU

pipe 1ALU SAT BP WB

AGU
Load/store
pipe 0 or 1WB

A
rc

hi
te

ct
ur

al
 re

gi
st

er
 fi

le

RAM
+

TLB

L2
update

Format
forward



+
Instruction Fetch Unit

n Predicts instruction stream

n Fetches instructions from the L1 
instruction cache

n Places the fetched instructions 
into a buffer for consumption by 
the decode pipeline

n Also includes the L1 instruction 
cache

n Speculative (there is no 
guarantee that they are 
executed)

n Branch or exceptional 
instruction in the code stream 
can cause a pipeline flush

n Can fetch up to four instructions 
per cycle

n F0
n Address generation unit (AGU) 

generates a new virtual address

n Not counted as part of the 13-stage 
pipeline

n F1

n The calculated address is used to 
fetch instructions from the L1 
instruction cache

n In parallel, the fetch address is used 
to access branch prediction arrays

n F3

n Instruction data are placed in the 
instruction queue

n If an instruction results in branch 
prediction, new target address is 
sent to the address generation unit

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



+
Instruction Decode Unit

n Decodes and sequences all ARM and Thumb instructions

n Dual pipeline structure, pipe0 and pipe1
n Two instructions can progress at a time
n Pipe0 contains the older instruction in program order
n If instruction in pipe0 cannot issue, instruction in pipe1 will not issue

n All issued instructions progress in order

n Results written back to register file at end of execution 
pipeline
n Prevents WAR hazards
n Keeps track of WAW hazards and recovery from flush conditions 

straightforward

n Main concern of decode pipeline is prevention of RAW 
hazards

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



+
Instruction Processing Stages

D0 
•Thumb 
instructions 
decompressed 
and preliminary 
decode is 
performed

D1
•Instruction 
decode is 
completed

D2 
•Writes 
instructions into 
and read 
instructions from 
pending/replay 
queue

D3 
•Contains the 
instruction 
scheduling logic

•Scoreboard 
predicts register 
availability using 
static scheduling 

•Hazard checking 
is done

D4 
•Final decode for 
control signals for 
integer execute 
load/store units

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

Replay 
event 

Delay Description 

Load data 
miss 

8 cycles 1. A load instruction misses in the L1 data cache. 
2.  A request is then made to the L2 data cache. 
3.  If a miss also occurs in the L2 data cache, then a second replay 

occurs. The number of stall cycles depends on the external 
system memory timing. The minimum time required to receive 
the critical word for an L2 cache miss is approximately 25 
cycles, but can be much longer because of L3 memory latencies. 

Data TLB 
miss 

24 cycles 1. A table walk because of a miss in the L1 TLB causes a 24-cycle 
delay, assuming the translation table entries are found in the L2 
cache. 

2. If the translation table entries are not present in the L2 cache, 
the number of stall cycles depends on the external system 
memory timing. 

Store buffer 
full 

8 cycles 
plus latency 
to drain fill 
buffer 

1. A store instruction miss does not result in any stalls unless the 
store buffer is full. 

2. In the case of a full store buffer, the delay is at least eight 
cycles. The delay can be more if it takes longer to drain some 
entries from the store buffer. 

Unaligned 
load or store 
request 

8 cycles 1. If a load instruction address is unaligned and the full access is 
not contained within a 128-bit boundary, there is a 8-cycle 
penalty. 

2. If a store instruction address is unaligned and the full access is 
not contained within a 64-bit boundary, there is a 8-cycle 
penalty. 

 

Table 16.3  
Cortex-A8 Memory System Effects on Instruction Timings 

(Table can be found on page 601 in the textbook.)



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             
(Table can be found on page 602 in the textbook.)

Restriction 
type 

Description Example Cycle Restriction 

Load/store 
resource 
hazard 

There is only one LS 
pipeline. Only one LS 
instruction can be issued per 
cycle. It can be in pipeline 0 
or pipeline 1 

LDR r5, [r6] 
STR r7, [r8] 
MOV r9, r10 

1 
2 
2 

 
Wait for LS unit 
Dual issue possible 

Multiply 
resource 
hazard 

There is only one multiply 
pipeline, and it is only 
available in pipeline 0. 

ADD r1, r2, r3 
MUL r4, r5, r6 
MUL r7, r8, r9 

1 
2 
3 

 
Wait for pipeline 0 
Wait for multiply unit 

Branch 
resource 
hazard 

There can be only one 
branch per cycle. It can be in 
pipeline 0 or pipeline 1. A 
branch is any instruction that 
changes the PC. 

BX r1 
BEQ 0x1000 
ADD r1, r2, r3 

1 
2 
2 

 
Wait for branch 
Dual issue possible 

Data output 
hazard 

Instructions with the same 
destination cannot be issued 
in 
the same cycle. This can 
happen 
with conditional code. 

MOVEQ r1, r2 
MOVNE r1, r3 
 
LDR r5, [r6] 

1 
2 
 
2 

 
Wait because of output 

dependency 
Dual issue possible 

Data 
source 
hazard 

Instructions cannot be issued 
if their data is not available. 
See the scheduling tables for 
source requirements and 
stages results. 

ADD r1, r2, r3 
ADD r4, r1, r6 
LDR r7, [r4] 

1 
2 
4 

 
Wait for r1 
Wait two cycles for r4 

Multi-cycle 
instructions 

Multi-cycle instructions must 
issue in pipeline 0 and can 
only dual issue in their last 
iteration. 

MOV r1, r2 
LDM r3, {r4-r7} 
LDM (cycle 2) 
LDM (cycle 3) 
 
ADD r8, r9, r10 

1 
2 
3 
4 
 
4 

Wait for pipeline 0, transfer r4 
Transfer r5, r6 
Transfer r7 
Dual issue possible on last 

transfer 

 

Table 16.4  
Cortex-A8 Dual-Issue Restrictions 



+ Integer Execute Unit
n Consists of:

n Two symmetric arithmetic logic unit 
(ALU) pipelines

n An address generator for load and 
store instructions

n The multiply pipeline

n The instruction execute unit:

n Executes all integer ALU and multiply 
operations, including flag generation

n Generates the virtual addresses for 
loads and stores and the base write-
back value, when required

n Supplies formatted data for stores 
and forwards data and flags

n Processes branches and other 
changes of instruction stream and 
evaluates instruction condition codes

n For ALU instructions, either pipeline 
can be used, consisting of the 
following stages:

n E0 
n Access register file

n Up to six registers for two instructions

n E1
n Barrel shifter if needed.

n E2 
n ALU function

n E3
n If needed, completes saturation arithmetic

n E4
n Change in control flow prioritized and 

processed

n E5
n Results written back to register file

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



+ 

Load/Store Pipeline
n Runs parallel to integer pipeline

n E1
n Memory address generated from base and index 

register

n E2
n Address applied to cache arrays

n E3
n Load -- data are returned and formatted

n Store -- data are formatted and ready to be 
written to cache

n E4
n Updates L2 cache, if required

n E5
n Results are written back into the register file

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

Cycle Program 
Counter 

Instruction Timing Description 

1 0x00000ed0 BX r14 Dual issue pipeline 0 
1 0x00000ee4 CMP r0,#0 Dual issue in pipeline 1 
2 0x00000ee8 MOV r3,#3 Dual issue pipeline 0 
2 0x00000eec MOV r0,#0 Dual issue in pipeline 1 
3 0x00000ef0 STREQ r3,[r1,#0] Dual issue in pipeline 0, r3 not needed 

until E3 
3 0x00000ef4 CMP r2,#4 Dual issue in pipeline 1 
4 0x00000ef8 LDRLS pc,[pc,r2,LSL #2] Single issue pipeline 0, +1 cycle for load 

to pc, no extra cycle for shift since LSL 
#2 

5 0x00000f2c MOV r0,#1 Dual issue with 2nd iteration of load in 
pipeline 1 

6 0x00000f30 B {pc}+8 #0xf38 dual issue pipeline 0 
6 0x00000f38 STR r0,[r1,#0] Dual issue pipeline 1 
7 0x00000f3c: LDR pc,[r13],#4 Single issue pipeline 0, +1 cycle for load 

to pc 
8 0x0000017c ADD r2,r4,#0xc Dual issue with 2nd iteration of load in 

pipeline 1 
9 0x00000180 LDR r0,[r6,#4] Dual issue pipeline 0 
9 0x00000184 MOV r1,#0xa Dual issue pipeline 1 
12 0x00000188 LDR r0,[r0,#0] Single issue pipeline 0: r0 produced in 

E3, required in E1, so +2 cycle stall 
13 0x0000018c STR r0,[r4,#0] Single issue pipeline 0 due to LS 

resource hazard, no extra delay for r0 
since produced in E3 and consumed in 
E3 

14 0x00000190 LDR r0,[r4,#0xc] Single issue pipeline 0 due to LS 
resource hazard 

15 0x00000194 LDMFD r13!,{r4-r6,r14} Load multiple: loads r4 in 1st cycle, r5 
and r6 in 2nd cycle, r14 in 3rd cycle, 3 
cycles total 

17 0x00000198 B {pc}+0xda8 #0xf40 dual issue in pipeline 1 with 3rd 
cycle of LDM 

18 0x00000f40 ADD r0,r0,#2 ARM Single issue in pipeline 0 
19 0x00000f44 ADD r0,r1,r0 ARM Single issue in pipeline 0, no dual issue 

due to hazard on r0 produced in E2 and 
required in E2 

 

Table 16.5  

Cortex-A8 
Example
Dual Issue 

Instruction Sequence 
for 

Integer Pipeline 

(Table can be found on page 603 in the textbook.)



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

Figure 16.11  ARM Cortex-A8 NEON and Floating-Point Pipeline

Integer
ALU,

MAC,
SHIFT
pipes

Non-IEEE
FMUL pipe

Non-IEEE
FADD pipe

Load/store
and

permute

Load and store
with alignment

Instruction decode

NEON register writeback

IEEE
single/double
precision VFP

WB

WB

WB

Shift 3

ABS

Shift 2

ALU

Shift 1

FMT

WB

WB

FMUL
2

FADD
2

FMUL
1

FMUL
4

FMUL
3

FADD
1

FADD
4

FADD
3

FDUP

FFMT

WB
Store
Align

PERM
2

8-entry
store

queue

PERM
1

Load
Align

Mux
with
NRF

Mux L1/
MCR

WBVFP

ACC
2

ACC
1

MUL
2

MUL
1

DUP

REg
read

+
M3

fwding
muxes

Score-
board

+
Issue
logic

Dec
queue

+
Rd/Wr
check

16-entry
Inst

queue
+

Inst
Dec

8-entry
store

queue



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

Figure 16.12  ARM Cortex-M3 Block Diagram

‡ Optional component

Cortex-M3 Processor

Embedded
Trace Macrocell

Nested
Vectored
Interrupt

Controller

Wake-up
Interrupt

Controller

‡ ‡Decode

Register Bank

Memory Interface

Fetch Execute
Cortex-M3 Processor Core

Debug
Access Port

Memory
Protection Unit

Serial Wire
viewer

‡

‡

‡Flash patch
and

breakpoint

Data
watchpoint
and trace

‡ ‡

Bus Matrix

Code interface SRAM and
peripheral interface



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             

Figure 16.13 ARM Cortex-M3 Pipeline

Instruction
decode

and
register

read

Data
phase
load/
store
and

branch

Shift

Fetch

Fetch Decode Execute

AGU

AGU =  address generation unit

Branch

Branch forwarding
and speculation

ALU branch not
forwarded/speculated

LSU branch result

ALU
and

branch

WR
Multiply

and
divide

Address
phase

and
writeback



+ Summary

n Superscalar versus 
Superpipelined

n Constraints

n Design issues

n Instruction-level parallelism

n Machine parallelism

n Instruction issue policy

n Register renaming

n Branch prediction

n Superscalar execution

n Superscalar implementation

n Intel core microarchitecture
n Front end
n Out-of-order execution logic
n Integer and floating-point 

execution units

n ARM Cortex-A8
n Instruction fetch unit
n Instruction decode unit
n Integer execute unit
n SIMD and floating-point 

pipeline

n ARM Cortex-M3

n Pipeline structure
n Dealing with branches

Chapter 16     

Instruction-Level 
Parallelism and 

Superscalar 
Processors

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.             


