
+

William Stallings
Computer Organization
and Architecture
10th Edition

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

+ Chapter 15
Reduced Instruction Set Computers (RISC)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Complex Instruction Set
(CISC)Computer

Reduced Instruction
Set (RISC) Computer

Characteristic IBM
370/168

VAX
11/780

Intel
80486

SPARC MIPS
R4000

Year developed 1973 1978 1989 1987 1991

Number of
instructions

208 303 235 69 94

Instruction size (bytes) 2–6 2–57 1–11 4 4
Addressing modes 4 22 11 1 1

Number of general-
purpose registers

16 16 8 40 - 520 32

Control memory size
(kbits)

420 480 246 — —

Cache size (kB) 64 64 8 32 128

Table 15.1
Characteristics of Some CISCs, RISCs, and

Superscalar Processors

(Table can be found on page 538 in the textbook.)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 15.1
Characteristics of Some CISCs, RISCs, and

Superscalar Processors
 Superscalar
Characteristic PowerPC Ultra

SPARC
MIPS

R10000

Year developed 1993 1996 1996

Number of
instructions

225

Instruction size (bytes) 4 4 4

Addressing modes 2 1 1

Number of general-
purpose registers

32 40 - 520 32

Control memory size
(kbits)

— — —

Cache size (kB) 16-32 32 64
 (Table can be found on page 538 in the textbook.)

Instruction
Execution
Characteristics

High-level languages (HLLs)
•Allow the programmer to express algorithms more
concisely

•Allow the compiler to take care of details that are not
important in the programmer’s expression of
algorithms

•Often support naturally the use of structured
programming and/or object-oriented design

Semantic gap
•The difference between the
operations provided in HLLs
and those provided in computer
architecture

Operations performed
•Determine the functions to be
performed by the processor and
its interaction with memory

Operands used
•The types of operands and the
frequency of their use determine
the memory organization for
storing them and the addressing
modes for accessing them

Execution sequencing
•Determines the control and
pipeline organization

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 15.2
Weighted Relative Dynamic Frequency of

HLL Operations [PATT82a]

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Dynamic Occurrence

Machine-Instruction
Weighted

Memory-Reference
Weighted

 Pascal C Pascal C Pascal C

ASSIGN 45% 38% 13% 13% 14% 15%
LOOP 5% 3% 42% 32% 33% 26%
CALL 15% 12% 31% 33% 44% 45%

IF 29% 43% 11% 21% 7% 13%
GOTO — 3% — — — —
OTHER 6% 1% 3% 1% 2% 1%

(Table can be found on page 540 in the textbook.)

Table 15.3
Dynamic Percentage of Operands

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Pascal C Average
Integer Constant 16% 23% 20%

Scalar Variable 58% 53% 55%

Array/Structure 26% 24% 25%

Table 15.4
Procedure Arguments

and Local Scalar Variables

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Percentage of Executed
Procedure Calls With

Compiler, Interpreter, and
Typesetter

Small Nonnumeric
Programs

>3 arguments 0–7% 0–5%

>5 arguments 0–3% 0%

>8 words of arguments and
local scalars

1–20% 0–6%

>12 words of arguments and
local scalars

1–6% 0–3%

(Table can be found on page 541 in the textbook.)

+
Implications

n HLLs can best be supported by optimizing performance of
the most time-consuming features of typical HLL programs

n Three elements characterize RISC architectures:
n Use a large number of registers or use a compiler to optimize

register usage

n Careful attention needs to be paid to the design of instruction
pipelines

n Instructions should have predictable costs and be consistent with
a high-performance implementation

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
The Use of a Large Register File

n Requires compiler to allocate
registers

n Allocates based on most used
variables in a given time

n Requires sophisticated
program analysis

n More registers

n Thus more variables will be in
registers

Software Solution Hardware Solution

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Parameter
Registers

Figure 15.1 Overlapping Register Windows

Local
Registers

Temporary
Registers Level J

Parameter
Registers

Call/Return

Local
Registers

Temporary
Registers Level J + 1

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Current
window
pointer

Saved
window
pointer

SaveRestore

A.param

w0 w1

w2

w3w4

w5

A.temp =
B.param

B.temp =
C.param

C.temp =
D.param

A.loc
B.loc

C.loc

Figure 15.2 Circular-Buffer Organization of Overlapped Windows

D.loc(E)

(F)

Call

Return

+
Global Variables

n Variables declared as global in an HLL can be assigned memory
locations by the compiler and all machine instructions that
reference these variables will use memory reference operands
n However, for frequently accessed global variables this scheme is

inefficient

n Alternative is to incorporate a set of global registers in the
processor
n These registers would be fixed in number and available to all

procedures
n A unified numbering scheme can be used to simplify the instruction

format

n There is an increased hardware burden to accommodate the
split in register addressing

n In addition, the linker must decide which global variables
should be assigned to registers

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 15.5
Characteristics of Large-Register-File

and Cache Organizations

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Large Register File Cache
All local scalars Recently-used local scalars
Individual variables Blocks of memory
Compiler-assigned global variables Recently-used global variables
Save/Restore based on procedure
nesting depth

Save/Restore based on cache
replacement algorithm

Register addressing
Multiple operands addressed and
accessed in one cycle

Memory addressing
One operand addressed and accessed
per cycle

(Table can be found on page 546 in the textbook.)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Data
Decoder

Instruction

Registers

(a) Windows-based register file

(b) Cache

Figure 15.3 Referencing a Scalar

R

W#

Instruction

A

Tags Data

Data

SelectCompare

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A

R1 R2 R3

(a) Time sequence of active use of registers (b) Register interference graph

Figure 15.4 Graph Coloring Approach

B
B

C
Symbolic Registers

Actual Registers

Ti
m

e

D

D

E

E

E

F

C
F

A

D

+
Why CISC ?

n There is a trend to richer instruction sets which include a
larger and more complex number of instructions

n Two principal reasons for this trend:
n A desire to simplify compilers
n A desire to improve performance

n There are two advantages to smaller programs:
n The program takes up less memory
n Should improve performance

n Fewer instructions means fewer instruction bytes to be fetched
n In a paging environment smaller programs occupy fewer

pages, reducing page faults
n More instructions fit in cache(s)

(Complex Instruction Set Computer)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 15.6
Code Size Relative to RISC I

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 [PATT82a]
11 C Programs

[KATE83]
12 C Programs

[HEAT84]
5 C Programs

RISC I 1.0 1.0 1.0

VAX-11/780 0.8 0.67
M68000 0.9 0.9

Z8002 1.2 1.12

PDP-11/70 0.9 0.71

(Table can be found on page 550 in the textbook.)

Characteristics of Reduced
Instruction Set Architectures

• Machine cycle --- the time it takes to fetch two operands from registers,
perform an ALU operation, and store the result in a register

One machine
instruction per
machine cycle

• Only simple LOAD and STORE operations accessing memory
• This simplifies the instruction set and therefore the control unit

Register-to-register
operations

• Simplifies the instruction set and the control unit
Simple addressing

modes

• Generally only one or a few formats are used
• Instruction length is fixed and aligned on word boundaries
• Opcode decoding and register operand accessing can occur

simultaneously

Simple instruction
formats

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

8 16 16 16 8 4 16

Add B C A Load RB B

Memory to memory Load RC B

I = 56, D= 96, M = 152 Add R
A

RB RC

 Store R
A

A

 Register to memory

 I = 104, D = 96, M = 200

(a) A ← B + C

8 16 16 16 8 4 4 4

Add B C A Add RA RB RC

Add A C B Add RB RA RC

Sub B D D Sub RD RD RB

Memory to memory Register to register
I = 168, D= 288, M = 456 I = 60, D = 0, M = 60

(b) A ← B + C; B ← A + C; D ← D – B

I = number of bytes occupied by executed instructions
D = number of bytes occupied by data
M = total memory traffic = I + D

Figure 15.5 Two Comparisons of Register-to-Register and Memory-to-Memory Approaches

a RISC that does not conform to this characteristic.
b CISC that does not conform to this characteristic.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processor

Number
of

instruc-
tion
sizes

Max
instruc-
tion size
in bytes

Number of
addressing

modes
Indirect

addressing

Load/store
combined

with
arithmetic

Max
number of
memory
operands

Unaligned
addressing

allowed

Max
Number of
MMU uses

Number of
bits for
integer
register
specifier

Number of
bits for FP

register
specifier

AMD29000 1 4 1 no no 1 no 1 8 3 a

MIPS R2000 1 4 1 no no 1 no 1 5 4

SPARC 1 4 2 no no 1 no 1 5 4

MC88000 1 4 3 no no 1 no 1 5 4

HP PA 1 4 10 a no no 1 no 1 5 4

IBM RT/PC 2a 4 1 no no 1 no 1 4 a 3 a

IBM RS/6000 1 4 4 no no 1 yes 1 5 5

Intel i860 1 4 4 no no 1 no 1 5 4

IBM 3090 4 8 2b no b yes 2 yes 4 4 2

Intel 80486 12 12 15 no b yes 2 yes 4 3 3

NSC 32016 21 21 23 yes yes 2 yes 4 3 3

MC68040 11 22 44 yes yes 2 yes 8 4 3

VAX 56 56 22 yes yes 6 yes 24 4 0

Clipper 4a 8 a 9 a no no 1 0 2 4 a 3 a

Intel 80960 2a 8 a 9 a no no 1 yes a — 5 3 a

Table 15.7
Characteristics of Some Processors

(Table can be found on page 554
in the textbook.)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Load rA @ M I E1 E2 D
I E1 E2

I E1 E2
I E1 E2

I E1 E2

D

I E1 E2
I E1 E2

I E1 E2
I E1 E2

D

Load rB @ M
NOOP
NOOP
Add rC @ rA + rB
Store M @ rC
Branch X

Load rA @ M I E D

I E

I E

D

I E
I E

I E

DLoad rB @ M

NOOP

Add rC @ rA + rB
Store M @ rC
Branch X

NOOP
NOOP

(d) Four-stage pipelined timing

(b) Two-stage pipelined timing

Load rA @ M I E D
I E

I E
D

I E
I E

D

Load rB @ M
Add rC @ rA + rB
Store M @ rC
Branch X

(a) Sequential execution

Load rA @ M I E D
I E

I E
I E

D

I E
I E

I E

D

Load rB @ M
NOOP
Add rC @ rA + rB
Store M @ rC
Branch X
NOOP

(c) Three-stage pipelined timing

Figure 15.6 The Effects of Pipelining

+
Optimization of Pipelining

n Delayed branch
n Does not take effect until after execution of following instruction
n This following instruction is the delay slot

n Delayed Load
n Register to be target is locked by processor
n Continue execution of instruction stream until register required
n Idle until load is complete
n Re-arranging instructions can allow useful work while loading

n Loop Unrolling
n Replicate body of loop a number of times
n Iterate loop fewer times
n Reduces loop overhead
n Increases instruction parallelism
n Improved register, data cache, or TLB locality

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Address Normal Branch Delayed Branch Optimized
Delayed Branch

100 LOAD X, rA LOAD X, rA LOAD X, rA
101 ADD 1, rA ADD 1, rA JUMP 105
102 JUMP 105 JUMP 106 ADD 1, rA
103 ADD rA, rB NOOP ADD rA, rB
104 SUB rC, rB ADD rA, rB SUB rC, rB
105 STORE rA, Z SUB rC, rB STORE rA, Z
106 STORE rA, Z

Table 15.8
Normal And Delayed Branch

(Table can be found on page 557 in the textbook.)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

(a) Traditional Pipeline

100 LOAD X, rA

Time

101 ADD 1, rA

102 JUMP 105

103 ADD rA, rB

105 STORE rA, Z

Figure 15.7 Use of the Delayed Branch

(b) RISC Pipeline with Inserted NOOP

100 LOAD X, rA

1

101 ADD 1, rA

102 JUMP 106

103 NOOP

106 STORE rA, Z

(c) Reversed Instructions

100 LOAD X, Ar

101 JUMP 105
102 ADD 1, rA

105 STORE rA, Z

2 3 4 5 6 7 8
I E

I E
I E

I E

D

I E D

1 2 3 4 5 6 7 8
I E

I E
I E

I E

D

I E D

1 2 3 4 5 6
I E

I E
I E

D

I E D

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

do i=2, n-1
 a[i] = a[i] + a[i-1] * a[i+l]
end do

(a) original loop

do i=2, n-2, 2
 a[i] = a[i] + a[i-1] * a[i+i]
 a[i+l] = a[i+l] + a[i] * a[i+2]
end do

if (mod(n-2,2) = i) then
 a[n-1] = a[n-1] + a[n-2] * a[n]
end if

(b) loop unrolled twice

Figure 15.8 Loop unrolling

MIPS R4000

One of the first
commercially available

RISC chip sets was
developed by MIPS

Technology Inc.

Inspired by an
experimental system
developed at Stanford

Has substantially the
same architecture and
instruction set of the
earlier MIPS designs
(R2000 and R3000)

Uses 64 bits for all
internal and external

data paths and for
addresses, registers, and

the ALU

Is partitioned into two
sections, one containing
the CPU and the other

containing a coprocessor
for memory

management

Supports thirty-two 64-
bit registers

Provides for up to 128
Kbytes of high-speed
cache, half each for

instructions and data

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Operation

Operation Operation code
rs Source register specifier
rt Source/destination register specifier
Immediate Immediate, branch, or address displacement
Target Jump target address
rd Destination register specifier
Shift Shift amount
Function ALU/shift function specifier

I-type
(immediate)

rs

6 5 5 16

rt Immediate

OperationJ-type
(jump)

6 26

Target

Figure 15.9 MIPS Instruction Formats

OperationR-type
(register)

rs

6 5 5 5

rt rd

5 6

Shift Function

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Clock Cycle

Cycle

IF

IF = Instruction fetch
RD = Read
MEM = Memory access
WB = Write back to register file
I-Cache = Instruction cache access
RF = Fetch operand from register
D-Cache = Data cache access
ITLB = Instruction address translation
IDEC = Instruction decode
IA = Compute instruction address
DA = Calculate data virtual address
DTLB = Data address translation
TC = Data cache tag check

I-Cache

(a) Detailed R3000 pipeline

(b) Modified R3000 pipeline with reduced latencies

RF

IDEC DA DTLBITLB

ITLB

Cycle

I-Cache ALU DTLB D-Cache

Cycle Cycle Cycle Cycle

RF WB

Cycle

(c) Optimized R3000 pipeline with parallel TLB and cache accesses

Figure 15.10 Enhancing the R3000 Pipeline

ITLB

Cycle

ALU D-Cache TC

Cycle Cycle Cycle

RF WB

IA

D-Cache WBALU OP

RD ALU MEM WB

φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 15.9
R3000 Pipeline Stages

Pipeline
Stage Phase Function
IF φ1 Using the TLB, translate an instruction virtual address to a physical

address (after a branching decision).
IF φ2 Send the physical address to the instruction address.
RD φ1 Return instruction from instruction cache.
 Compare tags and validity of fetched instruction.
RD φ2 Decode instruction.

Read register file.
If branch, calculate branch target address.

ALU φ1+φ2 If register-to-register operation, the arithmetic or logical operation is
performed.

ALU φ1 If a branch, decide whether the branch is to be taken or not.
If a memory reference (load or store), calculate data virtual address.

ALU φ2 If a memory reference, translate data virtual address to physical using
TLB.

MEM φ1 If a memory reference, send physical address to data cache.
MEM φ2 If a memory reference, return data from data cache, and check tags.
WB φ1 Write to register file.

(Table can be found on page 563 in the textbook.)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Clock Cycle

IC1

IF = Instruction fetch first half
IS = Instruction fetch second half
RF = Fetch operands from register
EX = Instruction execute
IC = Instruction cache

DC = Data cache
DF = Data cache first half
DS = Data cache second half
TC = Tag check
WB = Write back to register file

(a) Superpipelined implmentation of the optimized R3000 pipeline

Figure 15.11 Theoretical R3000 and Actual R4000 Superpipelines

RF ALU DC2 TC2IC2 ALU DC1 TC1 WB

IC1 RF ALU DC2 TC2IC2 ALU DC1 TC1 WB

φ2

Clock Cycle

IF

(b) R4000 pipeline

RF DF TCIS EX DS WB

IF RF DF TCIS EX DS WB

φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2

R4000 Pipeline Stages

n Instruction fetch first half
n Virtual address is presented to the

instruction cache and the translation
lookaside buffer

n Instruction fetch second half
n Instruction cache outputs the

instruction and the TLB generates the
physical address

n Register file
n One of three activities can occur:

n Instruction is decoded and check
made for interlock conditions

n Instruction cache tag check is
made

n Operands are fetched from the
register file

n Tag check
n Cache tag checks are performed for

loads and stores

n Instruction execute
n One of three activities can occur:

n If register-to-register operation
the ALU performs the operation

n If a load or store the data virtual
address is calculated

n If branch the branch target
virtual address is calculated
and branch operations checked

n Data cache first
n Virtual address is presented to the

data cache and TLB

n Data cache second
n The TLB generates the physical

address and the data cache
outputs the data

n Write back
n Instruction result is written back

to register file

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
SPARC

n Architecture defined by Sun Microsystems

n Sun licenses the architecture to other vendors to produce
SPARC-compatible machines

n Inspired by the Berkeley RISC 1 machine, and its instruction
set and register organization is based closely on the
Berkeley RISC model

Scalable Processor Architecture

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Physical
Registers

135

128
Ins

Logical Registers
Procedure A Procedure B Procedure C

127

120
Locals

119

112
Outs/Ins

111

104
Locals

103

96
Outs/Ins

95

88
Locals

87

80
Outs

7

0
Globals

Ins

Locals

Outs Ins

Locals

Outs Ins

Locals

R31C

R24C

R23C

R16C

R15C

R8C

R31B

R24B

R23B

R16B

R15B

R8B

R31A

R24A

R23A

R16A

R15A

R8A

Outs

R7

R0
Globals

•
•
•

R7

R0
Globals

Figure 15.12 SPARC Register Window Layout with Three Procedures

R7

R0
Globals

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

w4
locals

w2
locals

w0
locals

w6
locals

w6
ins

w6
outs

w0
outs

w2
outs

w4
outs

w4
ins

w5
locals

w5
outs

w5
ins

w7
locals

CWP

WIM

Figure 15.13 Eight Register Windows Forming
a Circular Stack in SPARC

w7
ins

w1
locals

w1
outs

w7
outs

w1
ins

w3
locals

w3
outs

w3
ins

w2
ins

w0
ins

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Instruction Type Addressing Mode Algorithm SPARC Equivalent
Register-to-register Immediate operand = A S2

Load, store Direct EA = A R0 + S2

Register-to-register Register EA = R RS1, RS2
Load, store Register Indirect EA = (R) RS1 + 0

Load, store Displacement EA = (R) + A RS1 + S2

S2 = either a register operand or a 13-bit immediate operand

Table 15.10
Synthesizing Other Addressing Modes

with SPARC Addressing Modes

(Table can be found on page 568 in the textbook.)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

OpCall Format PC-relative displacement

2 30

Branch
Format

Op a Cond Op2 PC-relative displacement

OpSETHI
Format

Floating-
Point

Format

2

Dest

5

Op2

3

Immediate Constant

22

2 1 4 3 22

Figure 15.14 SPARC Instruction Formats

2 5 6 95 5

Op Dest Op3 FP-opSrc-1 Src-2

General
Formats

2 5 6

Op Dest Op3

8

ignored

5 1

Src-1

5

Src-20

Op Dest Op3 Immediate ConstantSrc-1 1

+
RISC versus CISC Controversy
n Quantitative

n Compare program sizes and execution speeds of programs on
RISC and CISC machines that use comparable technology

n Qualitative
n Examine issues of high level language support and use of VLSI

real estate

n Problems with comparisons:
n No pair of RISC and CISC machines that are comparable in life-

cycle cost, level of technology, gate complexity, sophistication of
compiler, operating system support, etc.

n No definitive set of test programs exists
n Difficult to separate hardware effects from complier effects
n Most comparisons done on “toy” rather than commercial products
n Most commercial devices advertised as RISC possess a mixture of

RISC and CISC characteristics

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Summary

n Instruction execution characteristics
n Operations
n Operands
n Procedure calls
n Implications

n The use of a large register file
n Register windows
n Global variables
n Large register file versus cache

n Reduced instruction set architecture
n Characteristics of RISC
n CISC versus RISC characteristics

n RISC pipelining

n Pipelining with regular instructions

n Optimization of pipelining

n MIPS R4000

n Instruction set

n Instruction pipeline

n SPARC

n SPARC register set

n Instruction set

n Instruction format

n Compiler-based register optimization

n RISC versus CISC controversy

Chapter 15

Reduced Instruction
Set Computers

(RISC)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

