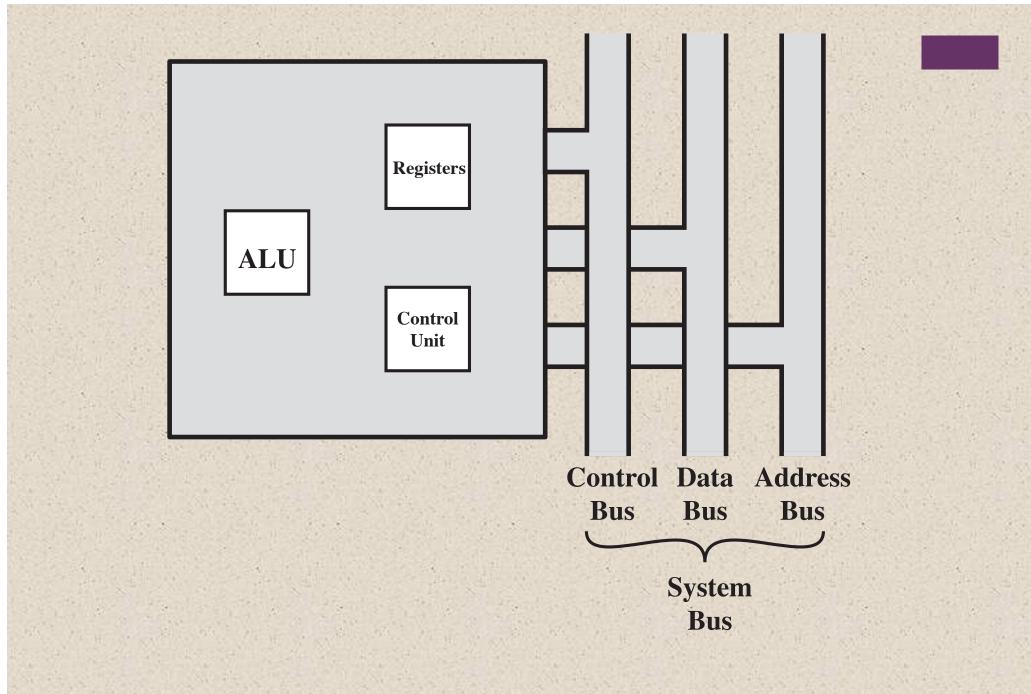
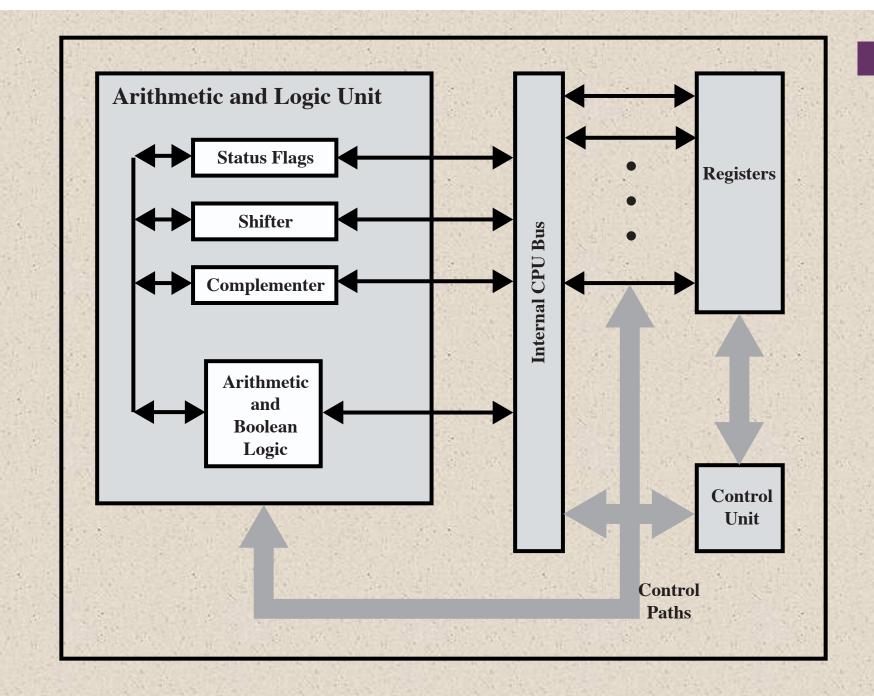


William Stallings Computer Organization and Architecture 10th Edition


+ Chapter 14 Processor Structure and Function

Processor Organization


Processor Requirements:

- Fetch instruction
 - The processor reads an instruction from memory (register, cache, main memory)
- Interpret instruction
 - The instruction is decoded to determine what action is required
- Fetch data
 - The execution of an instruction may require reading data from memory or an I/O module
- Process data
 - The execution of an instruction may require performing some arithmetic or logical operation on data
- Write data
 - The results of an execution may require writing data to memory or an I/O module
- In order to do these things the processor needs to store some data temporarily and therefore needs a small internal memory

Figure 14.1 The CPU with the System Bus

Figure 14.2 Internal Structure of the CPU

Register Organization

- Within the processor there is a set of registers that function as a level of memory above main memory and cache in the hierarchy
- The registers in the processor perform two roles:

User-Visible Registers

 Enable the machine or assembly language programmer to minimize main memory references by optimizing use of registers

Control and Status Registers

 Used by the control unit to control the operation of the processor and by privileged operating system programs to control the execution of programs

User-Visible Registers

Referenced by means of the machine language that the processor executes

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Categories:

- General purpose
 - Can be assigned to a variety of functions by the programmer
- Data
- May be used only to hold data and cannot be employed in the calculation of an operand address
- Address
 - May be somewhat general purpose or may be devoted to a particular addressing mode
 - Examples: segment pointers, index registers, stack pointer
- Condition codes
 - Also referred to as *flags*
 - Bits set by the processor hardware as the result of operations

Table 14.1 Condition Codes

	Advantages		Disadvantages
1.	Because condition codes are set by normal	1.	Condition codes add complexity, both to
	arithmetic and data movement instructions,		the hardware and software. Condition code
	they should reduce the number of		bits are often modified in different ways
	COMPARE and TEST instructions needed.		by different instructions, making life more
2.	Conditional instructions, such as BRANCH		difficult for both the microprogrammer
8	are simplified relative to composite		and compiler writer.
	instructions, such as TEST AND	2.	\mathbf{O} , \mathbf{J}
	BRANCH.		typically not part of the main data path, so
3.	Condition codes facilitate multiway		they require extra hardware connections.
	branches. For example, a TEST instruction	3.	Often condition code machines must add
	can be followed by two branches, one on		special non-condition-code instructions for
	less than or equal to zero and one on		special situations anyway, such as bit
	greater than zero.		checking, loop control, and atomic
			semaphore operations.
4.	Condition codes can be saved on the stack	4.	In a pipelined implementation, condition
	during subroutine calls along with other		codes require special synchronization to
	register information.		avoid conflicts.

Control and Status Registers

Four registers are essential to instruction execution:

- Program counter (PC)
 - Contains the address of an instruction to be fetched
- Instruction register (IR)
 - Contains the instruction most recently fetched
- Memory address register (MAR)
 - Contains the address of a location in memory
- Memory buffer register (MBR)
 - Contains a word of data to be written to memory or the word most recently read

⁺ Program Status Word (PSW)

Register or set of registers that contain status information

Common fields or flags include:

- Sign
- Zero
- Carry
- Equal
- Overflow
- Interrupt Enable/Disable
- Supervisor

Data registers

D0	
D1	
D2	
D3	
D4	
D5	
D6	
D7	

Address registers

A0	
A1	
A2 A3	1
A3	1
A4	
A5 A6	
A6	
A7′	
30. S.	

Ge	eneral registe	ers
AX	Accumulator	
BX	Base	3
CX	Count	0.0
DX	Data	1

Po	inters & ind	ex
SP	Stack ptr	
BP	Base ptr	
SI	Source index	
DI	Dest index	

	Segment
CS	Code
DS	Data
SS	Stack
ES	Extrat

Program status Flags Instr ptr

(b) 8086

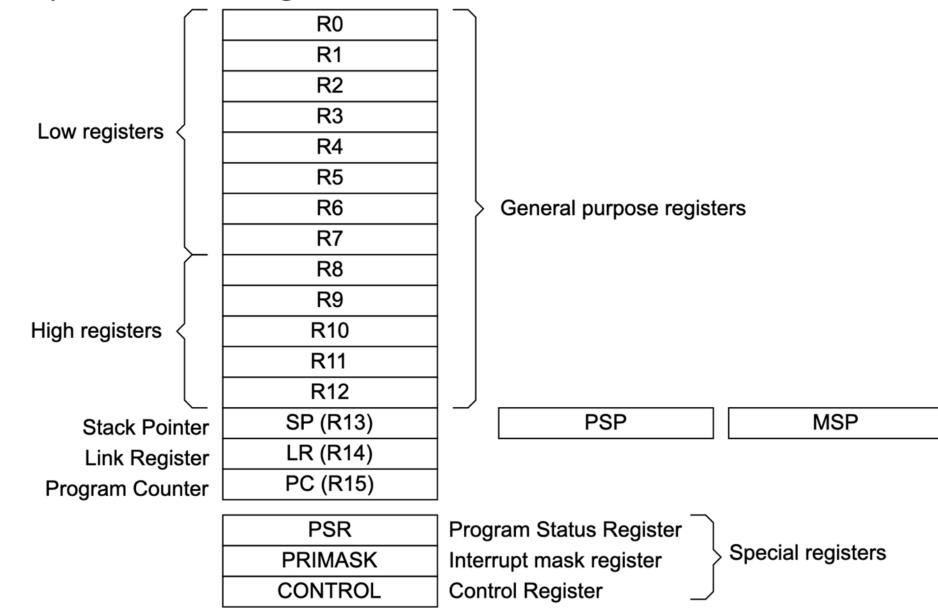
Program status
Program counter
Status register

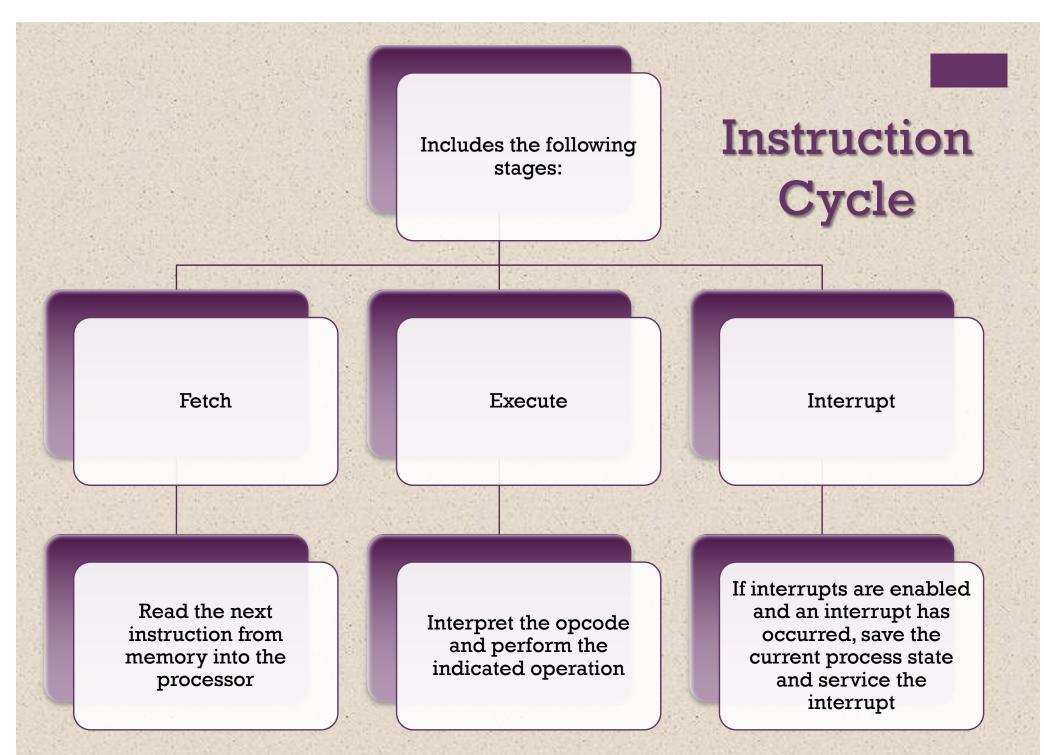
(a) MC68000

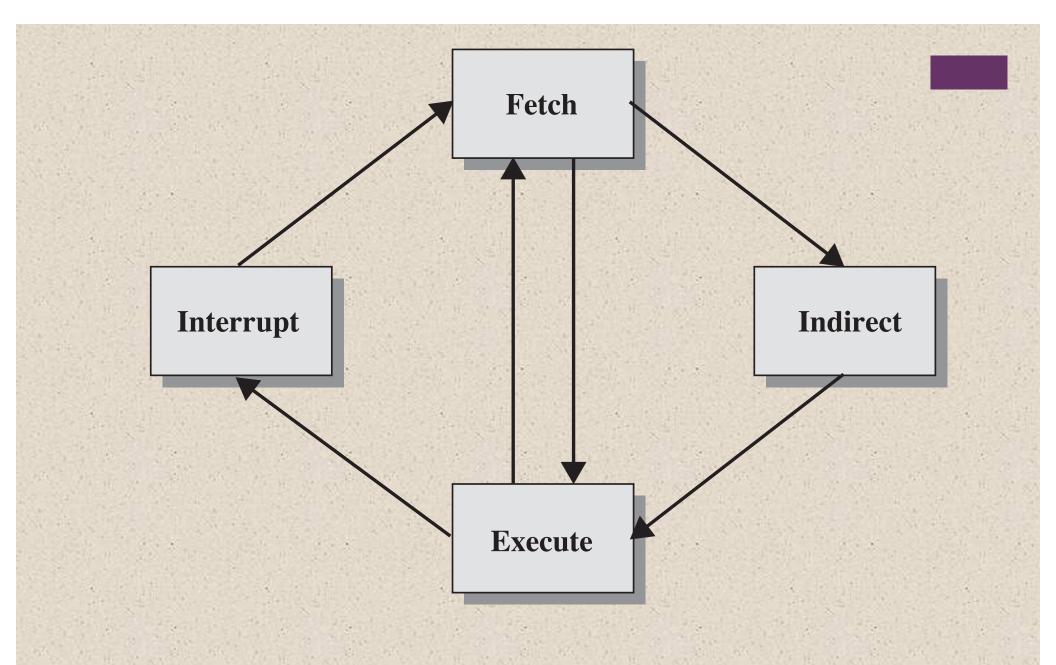
General Registers

EAX	AX
EBX	BX
ECX	CX
EDX	DX

ESP	SP
EBP	BP
ESI	SI
EDI	DI


Program Status
FLAGS Register
Instruction Pointer


(c) 80386 - Pentium 4


Figure 14.3 Example Microprocessor Register Organizations

2.1.3. Core registers

The processor core registers are:

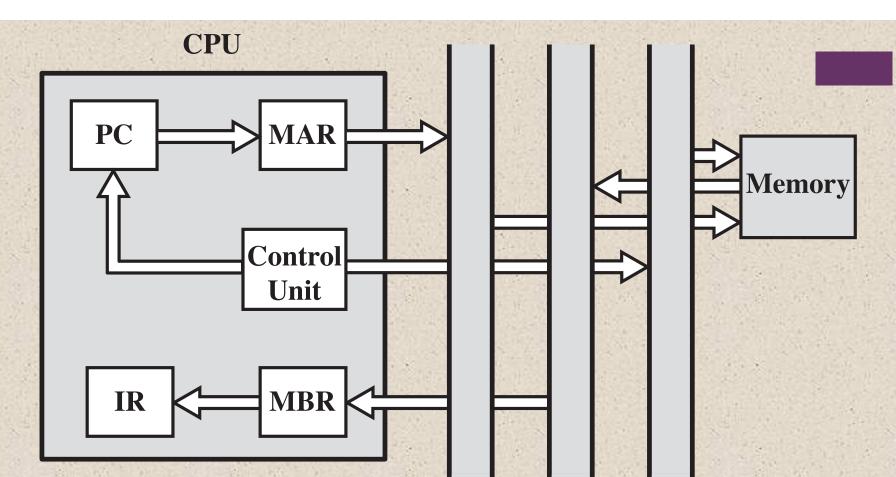
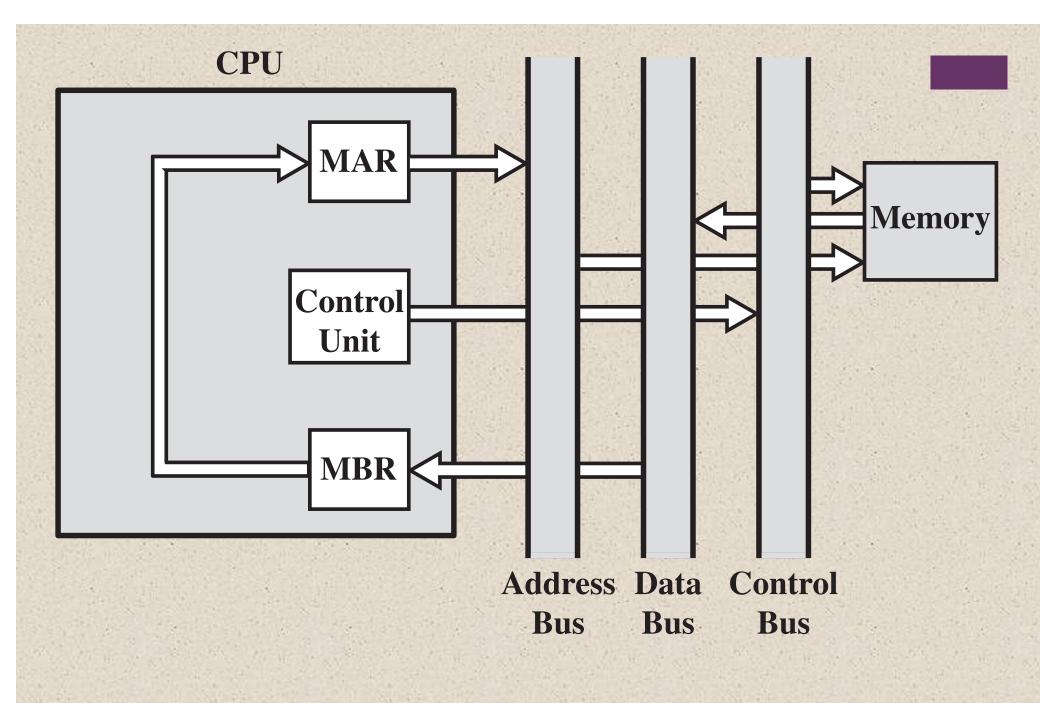
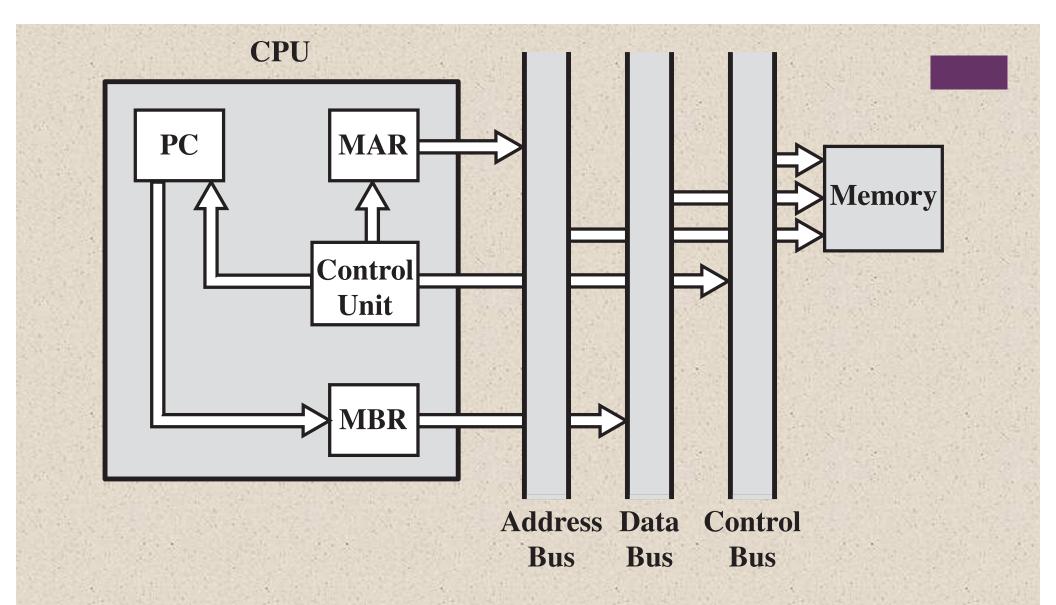


Figure 14.4 The Instruction Cycle


Figure 14.5 Instruction Cycle State Diagram


AddressDataControlBusBusBus

MBR = Memory buffer register MAR = Memory address register IR = Instruction register PC = Program counter

Figure 14.6 Data Flow, Fetch Cycle

Figure 14.7 Data Flow, Indirect Cycle

Figure 14.8 Data Flow, Interrupt Cycle

Pipelining Strategy

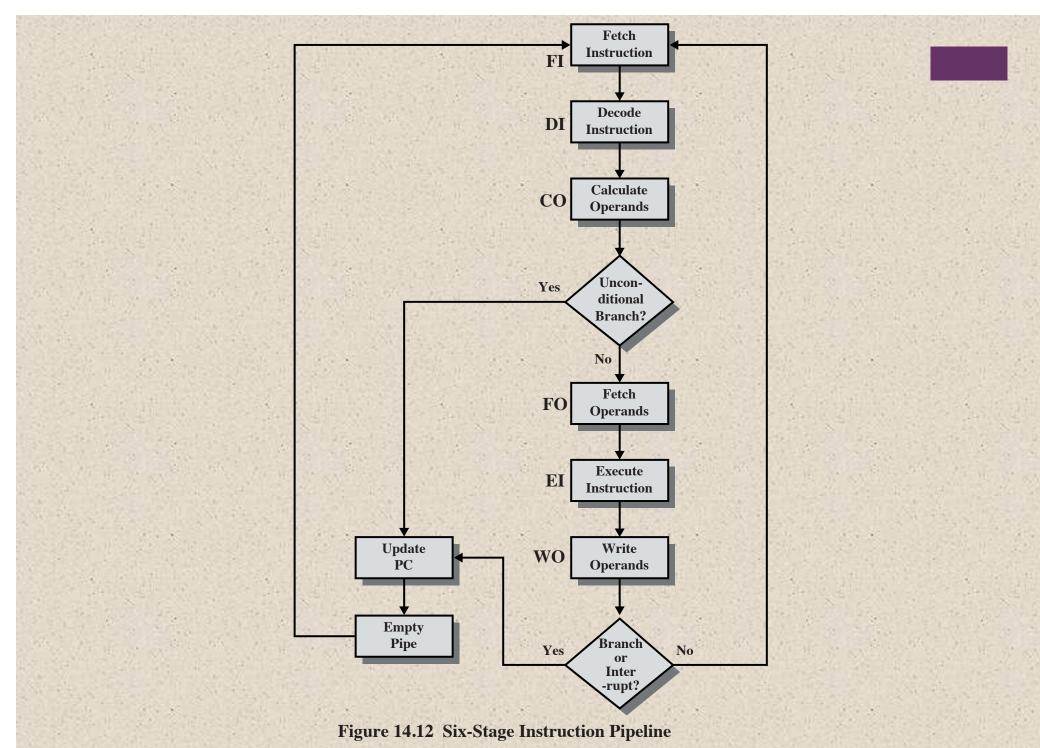
Similar to the use of an assembly line in a manufacturing plant To apply this concept to instruction execution we must recognize that an instruction has a number of stages

New inputs are accepted at one end before previously accepted inputs appear as outputs at the other end

Figure 14.9 Two-Stage Instruction Pipeline

+ Additional Stages

- Fetch instruction (FI)
 - Read the next expected instruction into a buffer
- Decode instruction (DI)
 - Determine the opcode and the operand specifiers
- Calculate operands (CO)
 - Calculate the effective address of each source operand
 - This may involve displacement, register indirect, indirect, or other forms of address calculation


- Fetch operands (FO)
 - Fetch each operand from memory
 - Operands in registers need not be fetched
- Execute instruction (EI)
 - Perform the indicated operation and store the result, if any, in the specified destination operand location
- Write operand (WO)
 - Store the result in memory

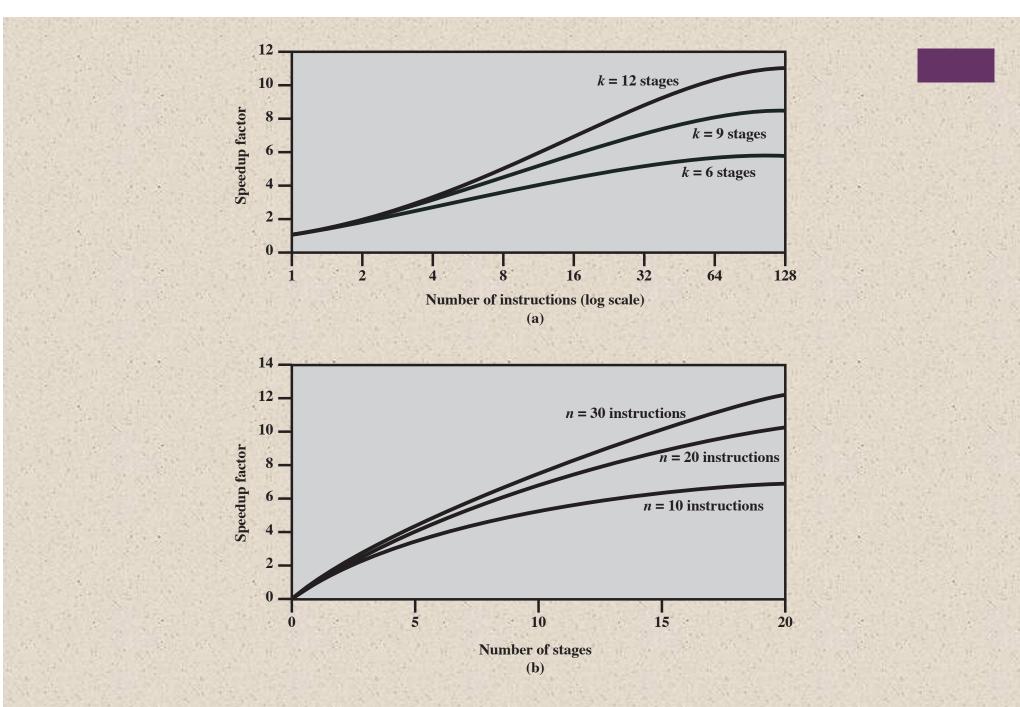
	Time							4	2						
												All the state			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Instruction 1	FI	DI	СО	FO	EI	wo									
Instruction 2		FI	DI	CO	FO	EI	wo								
Instruction 3			FI	DI	СО	FO	EI	wo							
Instruction 4				FI	DI	СО	FO	EI	wo						
Instruction 5					FI	DI	СО	FO	EI	wo					
Instruction 6						FI	DI	СО	FO	EI	wo				
Instruction 7							FI	DI	СО	FO	EI	wo			
Instruction 8								FI	DI	CO	FO	EI	WO		
Instruction 9									FI	DI	СО	FO	EI	WO	

Figure 14.10 Timing Diagram for Instruction Pipeline Operation

	Time					Branch Penalty								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Instruction 1	FI	DI	СО	FO	EI	wo								
Instruction 2		FI	DI	со	FO	EI	wo							
Instruction 3			FI	DI	СО	FO	EI	wo						
Instruction 4				FI	DI	со	FO							
Instruction 5					FI	DI	со							
Instruction 6						FI	DI							
Instruction 7							FI							
Instruction 15								FI	DI	СО	FO	EI	wo	
Instruction 16									FI	DI	СО	FO	EI	wo

Figure 14.11 The Effect of a Conditional Branch on Instruction Pipeline Operation

	3.0	2	23.	1	100		1000
	F	I	DI	СО	FO	EI	wo
1	I	1	2010	11	20	100	
2	Ľ	2	I1	12	1.1	n TH	
3	I.	3	I2	I1	N.C.	時代	
4	I	1	I 3	I2	I1		
5	I	5	I4	I 3	I2	I 1	14
6	Ι	5	I5	I4	I 3	I2	I1
7	ľ	7	I6	I5	I4	I3	I2
8	I	3	I7	I6	I5	I 4	I3
9	[]	,	I 8	I7	I6	I5	I4
10			I9	I 8	I7	I6	I5
11	1		3	I9	I 8	I7	I6
12		000	He .	112	I9	I 8	I7
13					100	I9	I 8
14				H. Alexandrian	1		I9
			12	(a) N	o bra	nche	es


FI DI CO FO EI WO 1 **I1** I2 **I1** 2 **I3 I2 I1** 3 **I4 I3 I2 I1** 4 **I5 I4 I3 I2 I1** 5 I5 **I4 I3 I2** 6 **I6 I1 I7 I6 I5 I**3 I2 7 **I4** I15 8 **I**3 I16 I15 9 I16 I15 10 I16 I15 11 12 I16 I15 13 I16 I15 14 **I16**

(b) With conditional branch

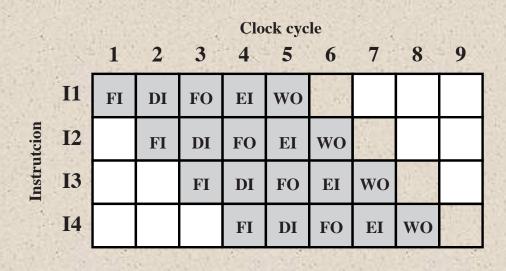
Figure 14.13 An Alternative Pipeline Depiction

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

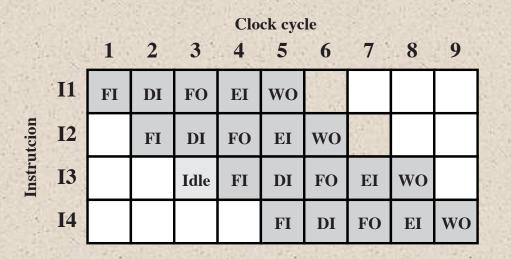
Time

Figure 14.14 Speedup Factors with Instruction Pipelining

Pipeline Hazards


Occur when the pipeline, or some portion of the pipeline, must stall because conditions do not permit continued execution

There are three types of hazards:


- Resource
- Data
- Control

Also referred to as a *pipeline bubble*

(a) Five-stage pipeline, ideal case

(b) I1 source operand in memory

Figure 14.15 Example of Resource Hazard

	Clock cycle									
	1	2	3	4	5	6	7	8	9	10
ADD EAX, EBX	FI	DI	FO	EI	wo					
SUB ECX, EAX		FI	DI	Idle		FO	EI	WO		
I3			FI			DI	FO	EI	WO	
I4						FI	DI	FO	EI	WO

Figure 14.16 Example of Data Hazard

Types of Data Hazard

- Read after write (RAW), or true dependency
 - An instruction modifies a register or memory location
 - Succeeding instruction reads data in memory or register location
 - Hazard occurs if the read takes place before write operation is complete
- Write after read (WAR), or antidependency
 - An instruction reads a register or memory location
 - Succeeding instruction writes to the location
 - Hazard occurs if the write operation completes before the read operation takes place
- Write after write (WAW), or output dependency
 - Two instructions both write to the same location
 - Hazard occurs if the write operations take place in the reverse order of the intended sequence

Control Hazard

Also known as a branch hazard

- Occurs when the pipeline makes the wrong decision on a branch prediction
- Brings instructions into the pipeline that must subsequently be discarded
- Dealing with Branches:
 - Multiple streams
 - Prefetch branch target
 - Loop buffer
 - Branch prediction
 - Delayed branch

Multiple Streams

A simple pipeline suffers a penalty for a branch instruction because it must choose one of two instructions to fetch next and may make the wrong choice

> A brute-force approach is to replicate the initial portions of the pipeline and allow the pipeline to fetch both instructions, making use of two streams

Drawbacks:

- With multiple pipelines there are contention delays for access to the registers and to memory
- Additional branch instructions may enter the pipeline before the original branch decision is resolved

Prefetch Branch Target

- When a conditional branch is recognized, the target of the branch is prefetched, in addition to the instruction following the branch
- Target is then saved until the branch instruction is executed
- If the branch is taken, the target has already been prefetched
- IBM 360/91 uses this approach

Loop Buffer

Small, very-high speed memory maintained by the instruction fetch stage of the pipeline and containing the n most recently fetched instructions, in sequence

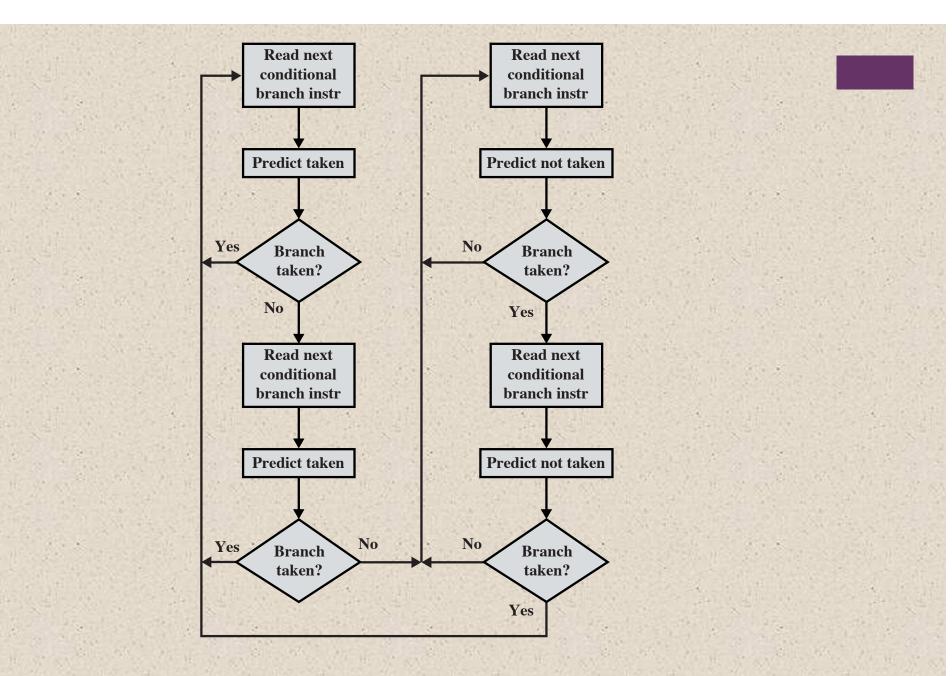
Benefits:

- Instructions fetched in sequence will be available without the usual memory access time
- If a branch occurs to a target just a few locations ahead of the address of the branch instruction, the target will already be in the buffer
- This strategy is particularly well suited to dealing with loops
- Similar in principle to a cache dedicated to instructions
 - Differences:
 - The loop buffer only retains instructions in sequence
 - Is much smaller in size and hence lower in cost

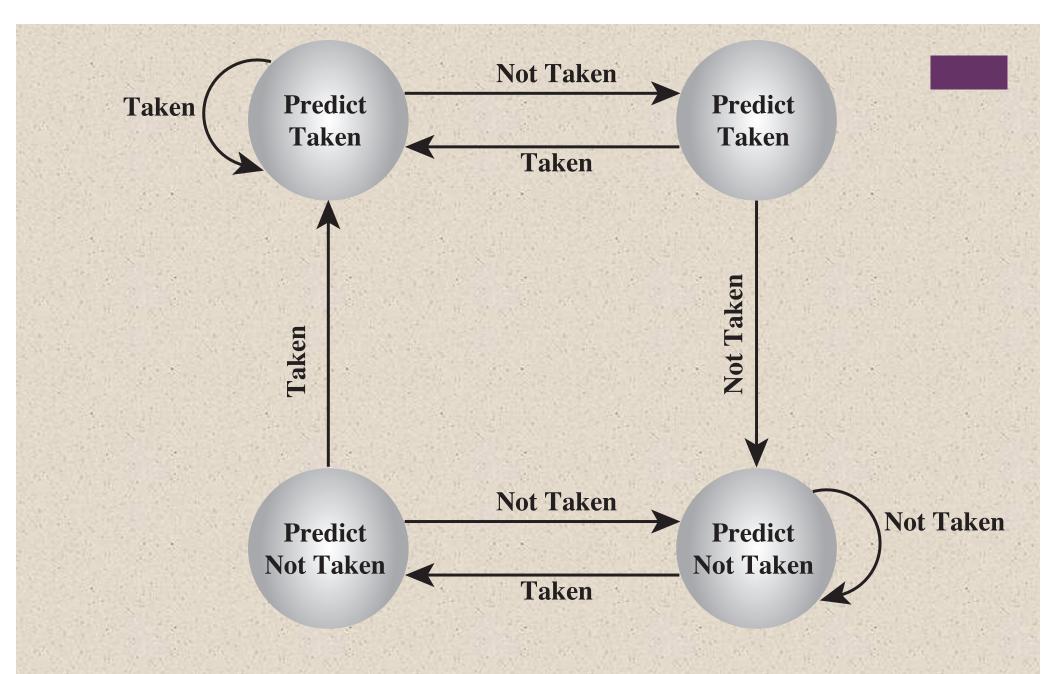
Branch address Instruction to be 8 decoded in case of hit **Loop Buffer** (256 bytes) Most significant address bits compared to determine a hit

Figure 14.17 Loop Buffer

Branch Prediction


Various techniques can be used to predict whether a branch will be taken:

- 1. Predict never taken
- 2. Predict always taken >
- 3. Predict by opcode


- These approaches are static
 - They do not depend on the execution history up to the time of the conditional branch instruction

- 1. Taken/not taken switch
- 2. Branch history table

These approaches are dynamicThey depend on the execution history

Figure 14.18 Branch Prediction Flow Chart

Figure 14.19 Branch Prediction State Diagram

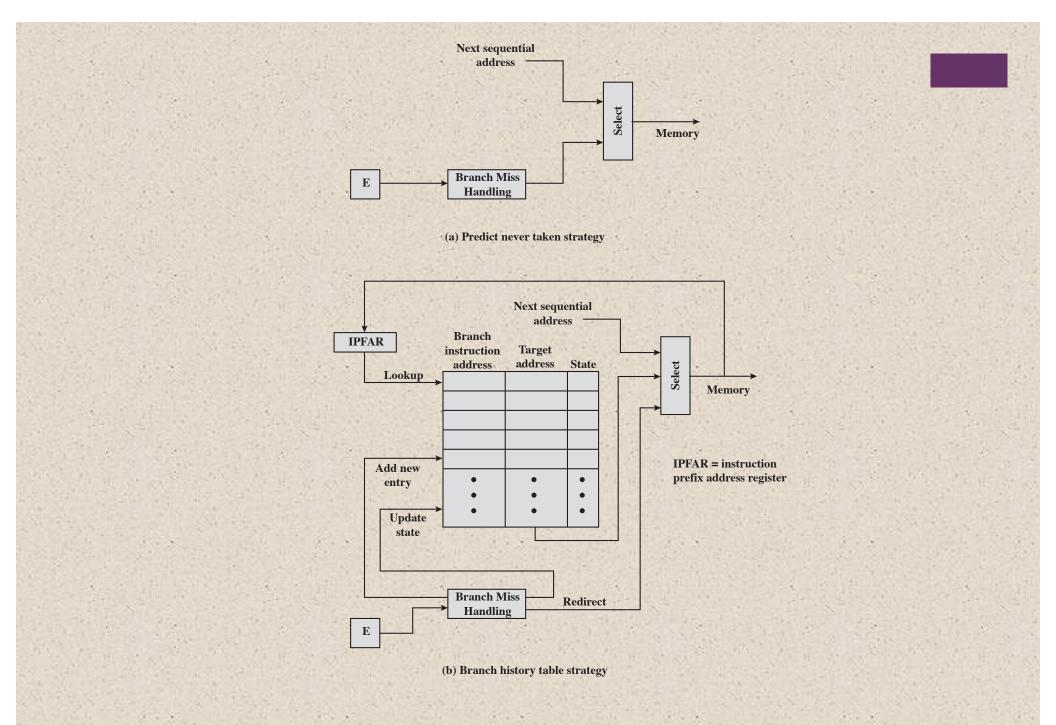
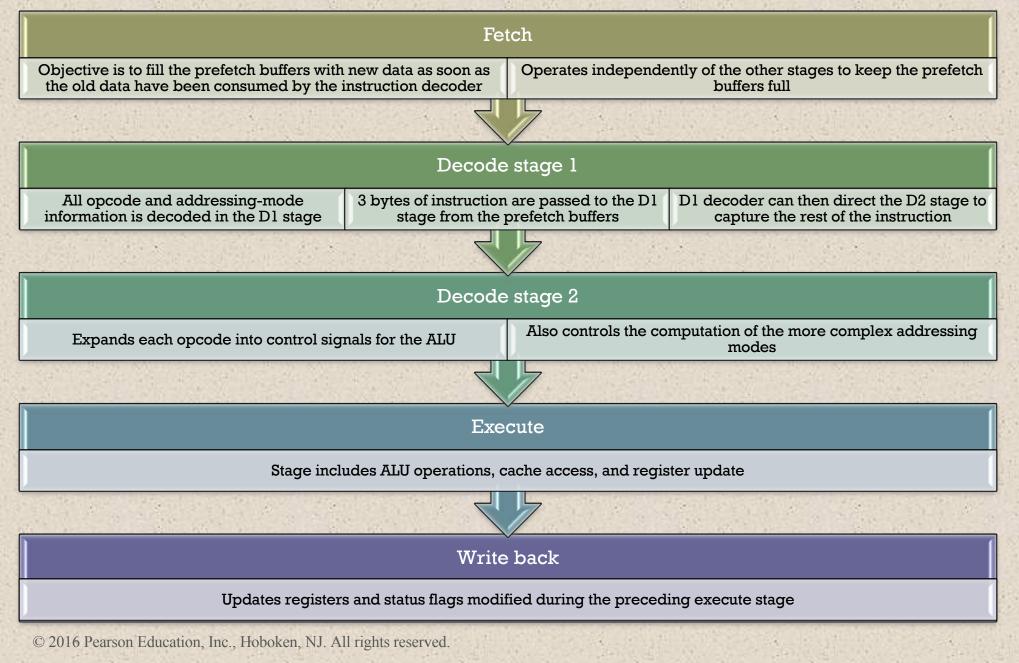



Figure 14.20 Dealing with Branches

Intel 80486 Pipelining

Fetch	D1	D2	EX	WB		
	Fetch	D1	D2	EX	WB	ate.
Mr. W.		Fetch	D1	D2	EX	WB

MOV Reg1, Mem1 MOV Reg1, Reg2 MOV Mem2, Reg1

(a) No Data Load Delay in the Pipeline

Fetch	D1	D2	EX	WB		MOV Reg1, Mem1
1	Fetch	D1		D2	EX	MOV Reg2, (Reg1)

(b) Pointer Load Delay

00	Fetch	D1	D2	EX	WB	1996		1. A.	CMP Reg1, Imm
	ant in	Fetch	D1	D2	EX		반양문 빈		Jcc Target
				1	Fetch	D1	D2	EX	Target

(c) Branch Instruction Timing

Figure 14.21 80486 Instruction Pipeline Examples

(a) Integer Unit in 32-bit Mode

	Туре	Number	Length (bits)	Purpose
	General	8	32	General-purpose user registers
	Segment	6	16	Contain segment selectors
ł	EFLAGS	1	32	Status and control bits
	Instruction Pointer	1	32	Instruction pointer

(b) Integer Unit in 64-bit Mode

Туре	Number	Length (bits)	Purpose
General	16	32	General-purpose user registers
Segment	6	16	Contain segment selectors
RFLAGS	1	64	Status and control bits
Instruction Pointer	1	64	Instruction pointer

Table 14.2

x86 Processor Registers

(c) Floating-Point Unit

	Туре	Number	Length (bits)	Purpose
	Numeric	8	80	Hold floating-point numbers
	Control	1	16	Control bits
	Status	1	16	Status bits
	Tag Word	1	16	Specifies contents of numeric registers
	Instruction Pointer	1	48	Points to instruction interrupted by exception
140/1	Data Pointer	1	48	Points to operand interrupted by exception

 $\ensuremath{\mathbb{C}}$ 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13 12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	0	0	0	I D	V I P	V I F	A C	V M	R F	0	N T	I O P L	O F	D F	I F	T F	S F	Z F	0	A F	0	P F	1	C F	

X ID	=	Identification flag
X VIP	=	Virtual interrupt pending
X VIF	=	Virtual interrupt flag
X AC	=	Alignment check
X VM	=	Virtual 8086 mode
X RF	=	Resume flag
X NT	=	Nested task flag
X IOPL	=	I/O privilege level
S OF	=	Overflow flag

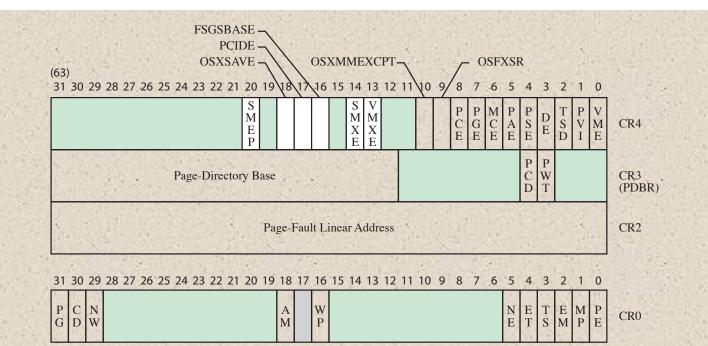
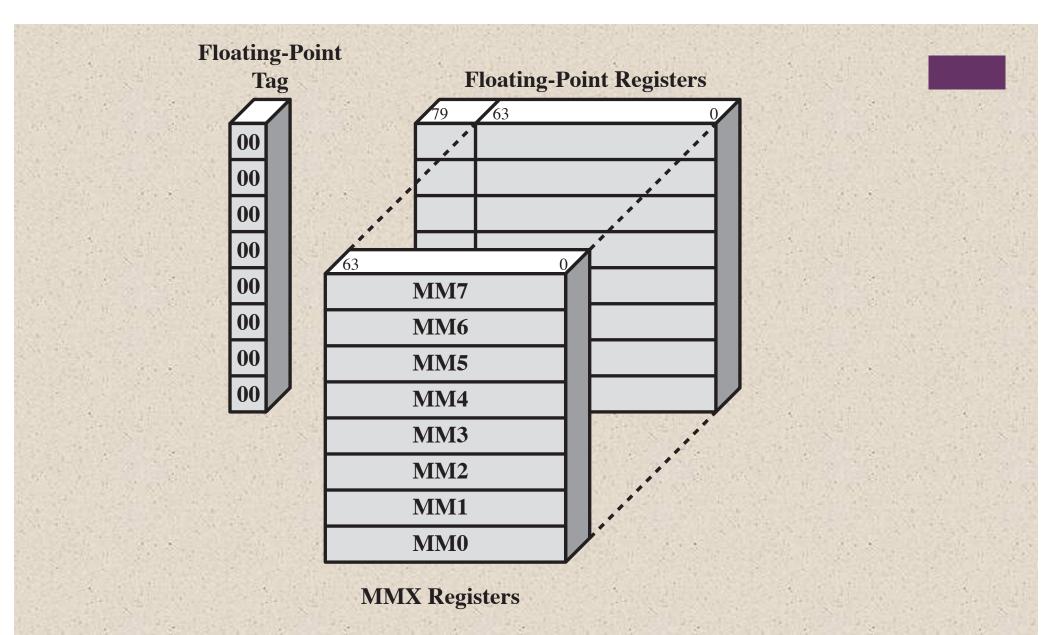

S Indicates a Status Flag C Indicates a Control Flag X Indicates a System Flag Shaded bits are reserved

Figure 14.22 x86 EFLAGS Register

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

C DF = Direction flag X IF = Interrupt enable flag X TF = Trap flag S SF = Sign flag S ZF = Zero flag S AF = Auxiliary carry flag S PF = Parity flag S CF = Carry flag



shaded area indicates reserved bits

OSXSAVE	Ξ	XSAVE enable bit	VME	=	Virtual 8086 Mode Extensions	
PCIDE	=	Enables process-context identifiers	PCD	=	Page-level Cache Disable	
FSGSBASE	=	Enables segment base instructions	PWT	=	Page-level Writes Transparent	
SMXE	=	Enable Safer mode extensions	PG	=	Paging	
VMXE	=	Enable virtual machine extensions	CD	=	Cache Disable	
OSXMMEXCPT	=	Support unmasked SIMD FP exceptions	NW	=	Not Write Through	
OSFXSR	=	Support FXSAVE, FXSTOR	AM	=	Alignment Mask	
PCE	=	Performance Counter Enable	WP	=	Write Protect	
PGE	=	Page Global Enable	NE	=	Numeric Error	
MCE	=	Machine Check Enable	ET	=	Extension Type	
PAE	=	Physical Address Extension	TS	=	Task Switched	
PSE	=	Page Size Extensions	EM	=	Emulation	
DE	=	Debug Extensions	MP	=	Monitor Coprocessor	
TSD	=	Time Stamp Disable	PE	=	Protection Enable	
PVI	=	Protected Mode Virtual Interrupt				

Figure 14.23 x86 Control Registers

Figure 14.24 Mapping of MMX Registers to Floating-Point Registers

Interrupt Processing

Interrupts and Exceptions

Interrupts

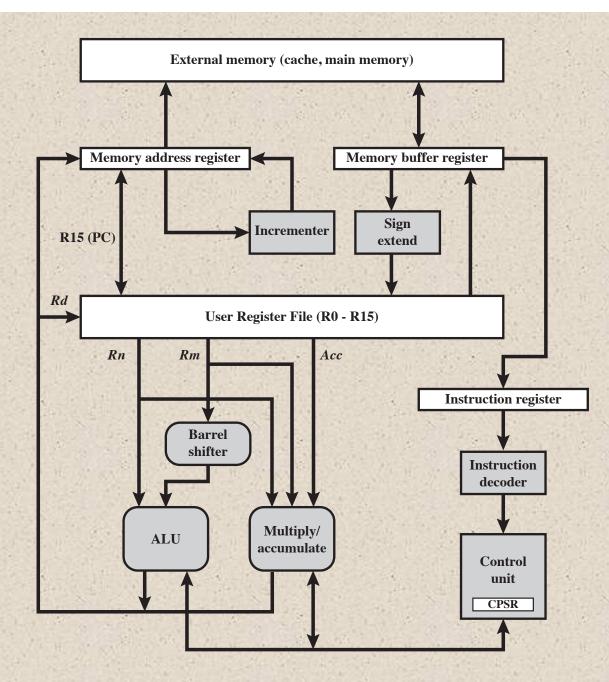
- Generated by a signal from hardware and it may occur at random times during the execution of a program
- Maskable
- Nonmaskable

Exceptions

- Generated from software and is provoked by the execution of an instruction
- Processor detected
- Programmed

Interrupt vector table

- Every type of interrupt is assigned a number
- Number is used to index into the interrupt vector table


Vector Number	Description	
0	Divide error; division overflow or division by zero	
1	Debug exception; includes various faults and traps related to debugging	
2	NMI pin interrupt; signal on NMI pin	and the second second
3	Breakpoint; caused by INT 3 instruction, which is a 1-byte instruction useful for debugging	
4	INTO-detected overflow; occurs when the processor executes INTO with the OF flag set	
5	BOUND range exceeded; the BOUND instruction compares a register with boundaries stored in memory and generates an interrupt if the contents of the register is out of bounds.	Table 14.3
6	Undefined opcode	
7	Device not available; attempt to use ESC or WAIT instruction fails due to lack of external device	06
8	Double fault; two interrupts occur during the same instruction and cannot be handled serially	x86
9	Reserved	Exception
10	Invalid task state segment; segment describing a requested task is not initialized or not valid	and
11	Segment not present; required segment not present	Interrupt
12	Stack fault; limit of stack segment exceeded or stack segment not present	
13	General protection; protection violation that does not cause another exception (e.g., writing to a read-only segment)	Vector Table
14	Page fault	
15	Reserved	No. Constant of the second
16	Floating-point error; generated by a floating-point arithmetic instruction	· •
17	Alignment check; access to a word stored at an odd byte address or a doubleword stored at an address not a multiple of 4	
18	Machine check; model specific	
19-31	Reserved	
32-255	User interrupt vectors; provided when INTR signal is activated	

Unshaded: exceptions Shaded: interrupts

The ARM Processor

ARM is primarily a RISC system with the following attributes:

- Moderate array of uniform registers
- A load/store model of data processing in which operations only perform on operands in registers and not directly in memory
- A uniform fixed-length instruction of 32 bits for the standard set and 16 bits for the Thumb instruction set
- Separate arithmetic logic unit (ALU) and shifter units
- A small number of addressing modes with all load/store addresses determined from registers and instruction fields
- Auto-increment and auto-decrement addressing modes are used to improve the operation of program loops
- Conditional execution of instructions minimizes the need for conditional branch instructions, thereby improving pipeline efficiency, because pipeline flushing is reduced

Figure 14.25 Simplified ARM Organization

Processor Modes

ARM architecture supports seven execution modes

Most application programs execute in user mode

• While the processor is in user mode the program being executed is unable to access protected system resources or to change mode, other than by causing an exception to occur

Remaining six execution modes are referred to as privileged modes

 These modes are used to run system software

Advantages to defining so many different privileged modes

- •The OS can tailor the use of system software to a variety of circumstances
- •Certain registers are dedicated for use for each of the privileged modes, allows swifter changes in context

Exception Modes

Have full access to system resources and can change modes freely

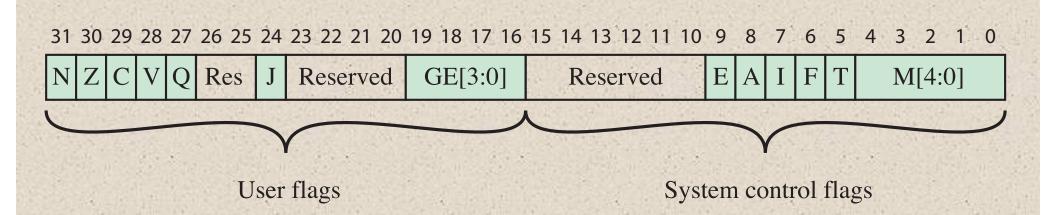
Entered when specific exceptions occur

Exception modes:

- Supervisor mode
- Abort mode
- Undefined mode
- Fast interrupt mode
- Interrupt mode

System mode:

- Not entered by any exception and uses the same registers available in User mode
- Is used for running certain privileged operating system tasks
- May be interrupted by any of the five exception categories


	See See		Modes		the local	Serie and						
神影仪建制	No. Sec.	and the second	Privilege	d modes	Elle Mar	1						
Exception modes												
User	System	Supervisor	Abort	Undefined	Interrupt	Fast Interrupt						
R0	R0	R0	R0	R0	R0	R0						
R1	R1	R1	R1	R1	R1	R1						
R2	R2	R2	R2	R2	R2	R2						
R3	R3	R3	R3	R3	R3	R3 .						
R4	R4	R4	R4	R4	R4	R4						
R5	R5	R5	R5	R5	R5	R5						
R6	R6	R6	R6	R6	R6	R6						
R7	R7	R7	R7	R7	R7	R7						
R8	R8	R8	R8	R8	R8	R8_fiq						
R9	R9	R9	R9	R9	R9	R9_fiq						
R10	R10	R10	R10	R10	R10	R10_fiq						
R11	R11	R11	R11	R11	R11	R11_fiq						
R12	R12	R12	R12	R12	R12	R12_fiq						
R13 (SP)	R13 (SP)	R13_svc	R13_abt	R13_und	R13_irq	R13_fiq						
R14 (LR)	R14 (LR)	R14_svc	R14_abt	R14_und	R14_irq	R14_fiq						
R15 (PC)	R15 (PC)	R15 (PC)	R15 (PC)	R15 (PC)	R15 (PC)	R15 (PC)						

CPSR	CPSR	CPSR	CPSR	CPSR	CPSR	CPSR
スードの書		SPSR_svc	SPSR_abt	SPSR_und	SPSR_irq	SPSR_fiq

Shading indicates that the normal register used by User or System mode has been replaced by an alternative register specific to the exception mode.

SP = stack pointer LR = link register PC = program counter CPSR = current program status register SPSR = saved program status register

Figure 14.26 ARM Register Organization

Figure 14.27 Format of ARM CPSR AND SPSR

Exception type	Mode	Normal entry address	Description	
Reset	Supervisor	0x0000000	Occurs when the system is initialized.	
Data abort	Abort	0x00000010	Occurs when an invalid memory address has been accessed, such as if there is no physical memory for an address or the correct access permission is lacking.	
FIQ (fast interrupt)	FIQ	0x000001C	Occurs when an external device asserts the FIQ pin on the processor. An interrupt cannot be interrupted except by an FIQ. FIQ is designed to support a data transfer or channel process, and has sufficient private registers to remove the need for register saving in such applications, therefore minimizing the overhead of context switching. A fast interrupt cannot be interrupted.	Table 14.4 ARM Interrupt
IRQ (interrupt)	IRQ	0x00000018	Occurs when an external device asserts the IRQ pin on the processor. An interrupt cannot be interrupted except by an FIQ.	Vector
Prefetch abort	Abort	0x0000000C	Occurs when an attempt to fetch an instruction results in a memory fault. The exception is raised when the instruction enters the execute stage of the pipeline.	
Undefined instructions	Undefined	0x00000004	Occurs when an instruction not in the instruction set reaches the execute stage of the pipeline.	
Software interrupt	Supervisor	0x0000008	Generally used to allow user mode programs to call the OS. The user program executes a SWI instruction with an argument that identifies the function the user wishes to perform.	

Summary

Chapter 14

- Processor organization
- Register organization
 - User-visible registers
 - Control and status registers
- Instruction cycle
 - The indirect cycle.
 - Data flow
- The x86 processor family
 - Register organization
 - Interrupt processing

Processor Structure and Function

- Instruction pipelining
 - Pipelining strategy
 - Pipeline performance
 - Pipeline hazards
 - Dealing with branches
 - Intel 80486 pipelining
- The Arm processor
 - Processor organization
 - Processor modes
 - Register organization
 - Interrupt processing