
+

William Stallings
Computer Organization
and Architecture
10th Edition

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

+ Chapter 14
Processor Structure and Function

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Processor Organization

n Fetch instruction
n The processor reads an instruction from memory (register, cache, main memory)

n Interpret instruction
n The instruction is decoded to determine what action is required

n Fetch data
n The execution of an instruction may require reading data from memory or an I/O

module

n Process data
n The execution of an instruction may require performing some arithmetic or logical

operation on data

n Write data
n The results of an execution may require writing data to memory or an I/O module

n In order to do these things the processor needs to store some data
temporarily and therefore needs a small internal memory

Processor Requirements:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.1 The CPU with the System Bus

Control
Bus

Data
Bus

Address
Bus

System
Bus

ALU

Registers

Control
Unit

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Control
Unit

Registers

Arithmetic
and

Boolean
Logic

Complementer

In
te

rn
al

 C
PU

 B
usShifter

Status Flags

Arithmetic and Logic Unit

Figure 14.2 Internal Structure of the CPU

Control
Paths

+
Register Organization

n Enable the machine or
assembly language
programmer to minimize main
memory references by
optimizing use of registers

n Used by the control unit to
control the operation of the
processor and by privileged
operating system programs to
control the execution of
programs

User-Visible Registers Control and Status Registers

n Within the processor there is a set of registers that function as a
level of memory above main memory and cache in the
hierarchy

n The registers in the processor perform two roles:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

User-Visible Registers

Referenced by means of
the machine language

that the processor
executes

• General purpose
• Can be assigned to a variety of functions by

the programmer
• Data

• May be used only to hold data and cannot
be employed in the calculation of an
operand address

• Address
• May be somewhat general purpose or may

be devoted to a particular addressing mode
• Examples: segment pointers, index

registers, stack pointer
• Condition codes

• Also referred to as flags
• Bits set by the processor hardware as the

result of operations

Categories:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 14.1
Condition Codes

Advantages Disadvantages
1. Because condition codes are set by normal

arithmetic and data movement instructions,
they should reduce the number of
COMPARE and TEST instructions needed.

2. Conditional instructions, such as BRANCH
are simplified relative to composite
instructions, such as TEST AND
BRANCH.

3. Condition codes facilitate multiway
branches. For example, a TEST instruction
can be followed by two branches, one on
less than or equal to zero and one on
greater than zero.

4. Condition codes can be saved on the stack

during subroutine calls along with other
register information.

1. Condition codes add complexity, both to
the hardware and software. Condition code
bits are often modified in different ways
by different instructions, making life more
difficult for both the microprogrammer
and compiler writer.

2. Condition codes are irregular; they are
typically not part of the main data path, so
they require extra hardware connections.

3. Often condition code machines must add
special non-condition-code instructions for
special situations anyway, such as bit
checking, loop control, and atomic
semaphore operations.

4. In a pipelined implementation, condition
codes require special synchronization to
avoid conflicts.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Control and Status Registers

n Program counter (PC)
n Contains the address of an instruction to be fetched

n Instruction register (IR)
n Contains the instruction most recently fetched

n Memory address register (MAR)
n Contains the address of a location in memory

n Memory buffer register (MBR)
n Contains a word of data to be written to memory or the word most

recently read

Four registers are essential to instruction execution:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Program Status Word (PSW)

Register or set of registers that
contain status information

Common fields or flags include:
• Sign
• Zero
• Carry
• Equal
• Overflow
• Interrupt Enable/Disable
• Supervisor

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

AXEAX
BXEBX
CXECX
DXEDX

SPESP
BPEBP
SIESI
DI

Program Status

General Registers

EDI

AX
BX
CX
DX

SP
BP
SI
DI

CS
DS
SS
ES

FLAGS Register
Instruction Pointer

Figure 14.3 Example Microprocessor Register Organizations

(a) MC68000

Status register
Program counter
Program status

Address registers

Data registers
D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7´

(b) 8086

Instr ptr
Flags

Extrat
Stack
Data
Code

Dest index
Source index

Base ptr
Stack ptr

Data
Count
Base

Accumulator

Program status

Segment

Pointers & index

General registers

(c) 80386 - Pentium 4

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Instruction
Cycle

Includes the following
stages:

Fetch

Read the next
instruction from
memory into the

processor

Execute

Interpret the opcode
and perform the

indicated operation

Interrupt

If interrupts are enabled
and an interrupt has
occurred, save the

current process state
and service the

interrupt

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Fetch

Figure 14.4 The Instruction Cycle

Execute

Interrupt Indirect

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Instruction
address

calculation

Instruction
operation
decoding

Operand
address

calculation

Data
Operation

Operand
address

calculation

Instruction
fetch

Instruction complete,
fetch next instruction

Multiple
operands

Return for string
or vector data

Figure 14.5 Instruction Cycle State Diagram

No
interrupt

Interrupt

Operand
fetch

Indirection

Operand
store

Interrupt
check

Interrupt

Multiple
results

Indirection

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
Figure 14.6 Data Flow, Fetch Cycle

Address
Bus

Data
Bus

Control
Bus

PC

CPU

MAR

Control
Unit

Memory

MBR

MBR = Memory buffer register
MAR = Memory address register
IR = Instruction register
PC = Program counter

IR

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.7 Data Flow, Indirect Cycle

Address
Bus

Data
Bus

Control
Bus

MAR

CPU

Control
Unit

Memory

MBR

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.8 Data Flow, Interrupt Cycle

Address
Bus

Data
Bus

Control
Bus

PC

CPU

Memory

MBR

MAR

Control
Unit

Pipelining Strategy

Similar to the use of
an assembly line in a
manufacturing plant

New inputs are
accepted at one end

before previously
accepted inputs

appear as outputs at
the other end

To apply this concept
to instruction

execution we must
recognize that an
instruction has a
number of stages

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Fetch
Instruction Instruction

(a) Simplified view

Result
Execute

Fetch
Instruction

Discard

Instruction

New addressWait Wait

(b) Expanded view

Figure 14.9 Two-Stage Instruction Pipeline

Result
Execute

+ Additional Stages

n Fetch instruction (FI)

n Read the next expected
instruction into a buffer

n Decode instruction (DI)

n Determine the opcode and
the operand specifiers

n Calculate operands (CO)

n Calculate the effective
address of each source
operand

n This may involve
displacement, register
indirect, indirect, or other
forms of address calculation

n Fetch operands (FO)

n Fetch each operand from
memory

n Operands in registers need
not be fetched

n Execute instruction (EI)

n Perform the indicated
operation and store the
result, if any, in the specified
destination operand location

n Write operand (WO)

n Store the result in memory

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1

Instruction 1

Time

FI

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Instruction 9

Figure 14.10 Timing Diagram for Instruction Pipeline Operation

2 3 4 5 6 7 8 9 10 11 12 13 14

DI CO FO EI WO

WOFI DI CO FO EI

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1

Instruction 1

Time

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 15

Instruction 16

Figure 14.11 The Effect of a Conditional Branch on Instruction Pipeline Operation

2 3 4 5 6 7 8 9 10

Branch Penalty

11 12 13 14

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO

FI DI CO

FI DI

FI

FI DI CO FO EI WO

FI DI CO FO EI WO

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

NoYes

Yes

No

FI

DI

CO

FO

EI

WO

Calculate
Operands

Fetch
Instruction

Decode
Instruction

Uncon-
ditional
Branch?

Branch
or

Inter
-rupt?

Figure 14.12 Six-Stage Instruction Pipeline

Write
Operands

Fetch
Operands

Execute
Instruction

Update
PC

Empty
Pipe

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

I16

I16

I16

I16

I16

I16

FI DI CO FO EI WO

I11

I2 I12

I3 I2 I13

I4 I3 I2 I14

I5 I4 I3 I2 I1

I6 I5 I4 I3 I2 I1

I7 I6 I5 I4 I3 I2

I8 I7 I6 I5 I4 I3

I9 I8 I7 I6 I5 I4

I9 I8 I7 I6 I5

I9 I8 I7 I6

I9 I8 I7

I9 I8

I9

5

6

7

8

9

10

11

12

13

14

Figure 14.13 An Alternative Pipeline Depiction

(a) No branches

FI DI CO FO EI WO

I11

I2 I12

I3 I2 I13

I4 I3 I2 I14

I5 I4 I3 I2 I1

I6 I5 I4 I3 I2 I1

I7 I6 I5 I4 I3 I2

I15

I15

I15

I15

I15

I15

I3

5

6

7

8

9

10

11

12

13

14

(b) With conditional branch

Ti
m

e

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1
0

2

4

6

8

10

12

0 5 10 15 20
0

2

4

6

8

10

12

14

2 4 8
Number of instructions (log scale)

(a)

Sp
ee

du
p

fa
ct

or
Sp

ee
du

p
fa

ct
or

Number of stages
(b)

Figure 14.14 Speedup Factors with Instruction Pipelining

16

k = 6 stages

n = 10 instructions

n = 20 instructions

n = 30 instructions

k = 9 stages

k = 12 stages

32 64 128

Pipeline Hazards

Occur when the
pipeline, or some

portion of the
pipeline, must stall
because conditions

do not permit
continued execution

Also referred to as a
pipeline bubble

There are three
types of hazards:
• Resource
• Data
• Control

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1

I1

Clock cycle

(a) Five-stage pipeline, ideal case

In
st

ru
tc

io
n

FI

I2

I3

I4

Figure 14.15 Example of Resource Hazard

2 3 4 5 6 7 8 9

DI FO EI WO

FI DI FO EI WO

FI DI FO EI WO

FI DI FO EI WO

1

I1

Clock cycle

(b) I1 source operand in memory

In
st

ru
tc

io
n

FI

I2

I3

I4

2 3 4 5 6 7 8 9

DI FO EI WO

FI DI FO EI WO

FIIdle DI FO EI WO

FI DI FO EI WO

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1

ADD EAX, EBX

Clock cycle

FI

SUB ECX, EAX

I3

I4

Figure 14.16 Example of Data Hazard

2 3 4 5 6 7 8 9 10

DI FO EI WO

FI DI Idle FO EI WO

FI DI FO EI WO

FI DI FO EI WO

+ Types of Data Hazard

n Read after write (RAW), or true dependency
n An instruction modifies a register or memory location
n Succeeding instruction reads data in memory or register

location
n Hazard occurs if the read takes place before write operation is

complete

n Write after read (WAR), or antidependency
n An instruction reads a register or memory location
n Succeeding instruction writes to the location
n Hazard occurs if the write operation completes before the

read operation takes place

n Write after write (WAW), or output dependency
n Two instructions both write to the same location
n Hazard occurs if the write operations take place in the reverse

order of the intended sequence

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Control Hazard

n Also known as a branch hazard

n Occurs when the pipeline makes the wrong decision on a
branch prediction

n Brings instructions into the pipeline that must subsequently
be discarded

n Dealing with Branches:
n Multiple streams

n Prefetch branch target

n Loop buffer

n Branch prediction

n Delayed branch

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Multiple Streams

A simple pipeline suffers a penalty for a
branch instruction because it must choose
one of two instructions to fetch next and
may make the wrong choice

A brute-force approach is to replicate the
initial portions of the pipeline and allow the
pipeline to fetch both instructions, making
use of two streams

Drawbacks:
• With multiple pipelines there are contention delays for

access to the registers and to memory
• Additional branch instructions may enter the pipeline

before the original branch decision is resolved

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

Prefetch Branch Target

n When a conditional branch is recognized, the
target of the branch is prefetched, in addition
to the instruction following the branch

n Target is then saved until the branch
instruction is executed

n If the branch is taken, the target has already
been prefetched

n IBM 360/91 uses this approach

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Loop Buffer

n Small, very-high speed memory maintained by the
instruction fetch stage of the pipeline and containing the n
most recently fetched instructions, in sequence

n Benefits:
n Instructions fetched in sequence will be available without the

usual memory access time
n If a branch occurs to a target just a few locations ahead of the

address of the branch instruction, the target will already be in the
buffer

n This strategy is particularly well suited to dealing with loops

n Similar in principle to a cache dedicated to instructions
n Differences:

n The loop buffer only retains instructions in sequence
n Is much smaller in size and hence lower in cost

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Loop Buffer
(256 bytes)

Branch address

8
Instruction to be

decoded in case of hit

Most significant address bits
compared to determine a hit

Figure 14.17 Loop Buffer

+
Branch Prediction

n Various techniques can be used to predict whether a branch
will be taken:

1. Predict never taken

2. Predict always taken

3. Predict by opcode

1. Taken/not taken switch

2. Branch history table

n These approaches are static

n They do not depend on the
execution history up to the time of
the conditional branch instruction

n These approaches are dynamic

n They depend on the execution history

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.18 Branch Prediction Flow Chart

Yes

Yes

Predict taken

Read next
conditional

branch instr

Branch
taken?

Predict taken

Read next
conditional

branch instr

Branch
taken?

No Yes

Yes

Predict not taken

Read next
conditional

branch instr

Branch
taken?

Predict not taken

Read next
conditional

branch instr

Branch
taken?

No

NoNo

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.19 Branch Prediction State Diagram

Not Taken
Not Taken

N
ot

 T
ak

en

Taken

Ta
ke

n

Not Taken

Taken

Taken Predict
Taken

Predict
Taken

Predict
Not Taken

Predict
Not Taken

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Branch Miss
Handling

Se
le

ct

E

Branch Miss
Handling

E

Memory

Se
le

ct

Memory

IPFAR

IPFAR = instruction
prefix address register

Lookup

Update
state

Add new
entry

Redirect

Branch
instruction

address
Target
address State

Next sequential
address

Next sequential
address

(a) Predict never taken strategy

(b) Branch history table strategy

Figure 14.20 Dealing with Branches

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Intel 80486 Pipelining

Write back

Updates registers and status flags modified during the preceding execute stage

Execute

Stage includes ALU operations, cache access, and register update

Decode stage 2

Expands each opcode into control signals for the ALU Also controls the computation of the more complex addressing
modes

Decode stage 1

All opcode and addressing-mode
information is decoded in the D1 stage

3 bytes of instruction are passed to the D1
stage from the prefetch buffers

D1 decoder can then direct the D2 stage to
capture the rest of the instruction

Fetch

Objective is to fill the prefetch buffers with new data as soon as
the old data have been consumed by the instruction decoder

Operates independently of the other stages to keep the prefetch
buffers full

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Fetch D1 D2 EX WB

Fetch D1 D2 EX WB

Fetch D1 D2 EX WB MOV Mem2, Reg1

(a) No Data Load Delay in the Pipeline

MOV Reg1, Reg2

MOV Reg1, Mem1

Fetch D1 D2 EX WB

Fetch D1 D2 EX

Fetch D1 D2 EX Target

(c) Branch Instruction Timing

Figure 14.21 80486 Instruction Pipeline Examples

Jcc Target

CMP Reg1, Imm

Fetch D1 D2 EX WB

Fetch D1 D2 EX

(b) Pointer Load Delay

MOV Reg2, (Reg1)

MOV Reg1, Mem1

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 14.2 x86 Processor Registers

(a) Integer Unit in 32-bit Mode

Type Number Length (bits) Purpose

General 8 32 General-purpose user registers
Segment 6 16 Contain segment selectors

EFLAGS 1 32 Status and control bits

Instruction Pointer 1 32 Instruction pointer

(b) Integer Unit in 64-bit Mode

Type Number Length (bits) Purpose
General 16 32 General-purpose user registers

Segment 6 16 Contain segment selectors

RFLAGS 1 64 Status and control bits
Instruction Pointer 1 64 Instruction pointer

(c) Floating-Point Unit

Type Number Length (bits) Purpose

Numeric 8 80 Hold floating-point numbers
Control 1 16 Control bits

Status 1 16 Status bits

Tag Word 1 16 Specifies contents of numeric
registers

Instruction Pointer 1 48 Points to instruction interrupted
by exception

Data Pointer 1 48 Points to operand interrupted by
exception

Table 14.2

x86
Processor
Registers

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.22 x86 EFLAGS Register

X ID = Identification flag
X VIP = Virtual interrupt pending
X VIF = Virtual interrupt flag
X AC = Alignment check
X VM = Virtual 8086 mode
X RF = Resume flag
X NT = Nested task flag
X IOPL = I/O privilege level
S OF = Overflow flag

C DF = Direction flag
X IF = Interrupt enable flag
X TF = Trap flag
S SF = Sign flag
S ZF = Zero flag
S AF = Auxiliary carry flag
S PF = Parity flag
S CF = Carry flag

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0 0 0 I
D

V
I
P

V
I
F

A
C

V
M

R
F 0 N

T

I
O
P
L

O
F

D
F

I
F

T
F

S
F

Z
F 0 A

F 0 P
F 1 C

F

0

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag
Shaded bits are reserved

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.23 x86 Control Registers

OSXSAVE = XSAVE enable bit
PCIDE = Enables process-context identifiers
FSGSBASE = Enables segment base instructions
SMXE = Enable Safer mode extensions
VMXE = Enable virtual machine extensions
OSXMMEXCPT = Support unmasked SIMD FP exceptions
OSFXSR = Support FXSAVE, FXSTOR
PCE = Performance Counter Enable
PGE = Page Global Enable
MCE = Machine Check Enable
PAE = Physical Address Extension
PSE = Page Size Extensions
DE = Debug Extensions
TSD = Time Stamp Disable
PVI = Protected Mode Virtual Interrupt

shaded area indicates reserved bits

VME = Virtual 8086 Mode Extensions
PCD = Page-level Cache Disable
PWT = Page-level Writes Transparent
PG = Paging
CD = Cache Disable
NW = Not Write Through
AM = Alignment Mask
WP = Write Protect
NE = Numeric Error
ET = Extension Type
TS = Task Switched
EM = Emulation
MP = Monitor Coprocessor
PE = Protection Enable

S
M
X
E

S
M
E
P

V
M
X
E

OSXSAVE OSFXSR

CR4
V
M
E

P
V
I

T
S
D

D
E

P
S
E

P
A
E

M
C
E

P
G
E

P
C
E

CR3
(PDBR)

CR2

Page-Directory Base

Page-Fault Linear Address

P
C
D

P
W
T

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931
(63)

PCIDE
FSGSBASE

OSXMMEXCPT

CR0T
S

E
M

M
P

P
E

E
T

N
E

A
M

N
W

C
D

P
G

W
P

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

079 63

63 0

MM0

00
00
00
00
00
00
00
00

MMX Registers

Figure 14.24 Mapping of MMX Registers to Floating-Point Registers

Floating-Point Registers
Floating-Point

Tag

MM1
MM2
MM3
MM4
MM5
MM6
MM7

+
Interrupt Processing

n Interrupts
n Generated by a signal from hardware and it may occur at random

times during the execution of a program
n Maskable
n Nonmaskable

n Exceptions
n Generated from software and is provoked by the execution of an

instruction
n Processor detected
n Programmed

n Interrupt vector table
n Every type of interrupt is assigned a number
n Number is used to index into the interrupt vector table

Interrupts and Exceptions

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Vector Number Description
0 Divide error; division overflow or division by zero
1 Debug exception; includes various faults and traps related to debugging
2 NMI pin interrupt; signal on NMI pin
3 Breakpoint; caused by INT 3 instruction, which is a 1-byte instruction useful for debugging
4 INTO-detected overflow; occurs when the processor executes INTO with the OF flag set
5 BOUND range exceeded; the BOUND instruction compares a register with boundaries stored in

memory and generates an interrupt if the contents of the register is out of bounds.
6 Undefined opcode
7 Device not available; attempt to use ESC or WAIT instruction fails due to lack of external device
8 Double fault; two interrupts occur during the same instruction and cannot be handled serially
9 Reserved
10 Invalid task state segment; segment describing a requested task is not initialized or not valid
11 Segment not present; required segment not present
12 Stack fault; limit of stack segment exceeded or stack segment not present
13 General protection; protection violation that does not cause another exception (e.g., writing to a

read-only segment)
14 Page fault
15 Reserved
16 Floating-point error; generated by a floating-point arithmetic instruction
17 Alignment check; access to a word stored at an odd byte address or a doubleword stored at an

address not a multiple of 4
18 Machine check; model specific

19-31 Reserved
32-255 User interrupt vectors; provided when INTR signal is activated

Unshaded: exceptions
Shaded: interrupts

Table 14.3

x86
Exception

and
Interrupt

Vector Table

+ The ARM Processor

n Moderate array of uniform registers

n A load/store model of data processing in which operations only perform
on operands in registers and not directly in memory

n A uniform fixed-length instruction of 32 bits for the standard set and 16
bits for the Thumb instruction set

n Separate arithmetic logic unit (ALU) and shifter units

n A small number of addressing modes with all load/store addresses
determined from registers and instruction fields

n Auto-increment and auto-decrement addressing modes are used to
improve the operation of program loops

n Conditional execution of instructions minimizes the need for conditional
branch instructions, thereby improving pipeline efficiency, because
pipeline flushing is reduced

ARM is primarily a RISC system with the following
attributes:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Memory address register

Incrementer

Barrel
shifter

Multiply/
accumulate

Figure 14.25 Simplified ARM Organization

ALU

R15 (PC)

Rn Rm

Rd

Acc

Sign
extend

User Register File (R0 - R15)

External memory (cache, main memory)

Memory buffer register

Instruction register

Control
unit

Instruction
decoder

CPSR

Processor Modes

ARM
architecture

supports seven
execution

modes

Most application
programs execute in
user mode
• While the processor is in

user mode the program
being executed is unable
to access protected
system resources or to
change mode, other than
by causing an exception
to occur

Remaining six
execution modes
are referred to as
privileged modes
• These modes are

used to run system
software

Advantages to defining
so many different
privileged modes
•The OS can tailor the use of
system software to a variety
of circumstances

•Certain registers are
dedicated for use for each of
the privileged modes, allows
swifter changes in context

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Exception Modes

Have full access
to system

resources and can
change modes

freely

Entered when
specific

exceptions occur

Exception modes:
• Supervisor mode
• Abort mode
• Undefined mode
• Fast interrupt mode
• Interrupt mode

System mode:
• Not entered by any

exception and uses the
same registers available
in User mode

• Is used for running certain
privileged operating
system tasks

• May be interrupted by
any of the five exception
categories

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Modes

 Privileged modes
 Exception modes

User System Supervisor Abort Undefined Interrupt Fast
Interrupt

R0 R0 R0 R0 R0 R0 R0

R1 R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7 R7

R8 R8 R8 R8 R8 R8 R8_fiq

R9 R9 R9 R9 R9 R9 R9_fiq

R10 R10 R10 R10 R10 R10 R10_fiq

R11 R11 R11 R11 R11 R11 R11_fiq

R12 R12 R12 R12 R12 R12 R12_fiq

R13 (SP) R13 (SP) R13_svc R13_abt R13_und R13_irq R13_fiq

R14 (LR) R14 (LR) R14_svc R14_abt R14_und R14_irq R14_fiq

R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)

CPSR CPSR CPSR CPSR CPSR CPSR CPSR

 SPSR_svc SPSR_abt SPSR_und SPSR_irq SPSR_fiq

Shading indicates that the normal register used by User or System mode has been replaced by an
alternative register specific to the exception mode.

SP = stack pointer CPSR = current program status register
LR = link register SPSR = saved program status register
PC = program counter

Figure 14.26 ARM Register Organization

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Res J Reserved

System control flagsUser flags

GE[3:0] Reserved E A I F T M[4:0]QVCZN
012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Figure 14.27 Format of ARM CPSR AND SPSR

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Exception type Mode Normal
entry

address

Description

Reset Supervisor 0x00000000 Occurs when the system is initialized.
Data abort Abort 0x00000010 Occurs when an invalid memory address

has been accessed, such as if there is no
physical memory for an address or the
correct access permission is lacking.

FIQ (fast interrupt) FIQ 0x0000001C Occurs when an external device asserts the
FIQ pin on the processor. An interrupt
cannot be interrupted except by an FIQ.
FIQ is designed to support a data transfer
or channel process, and has sufficient
private registers to remove the need for
register saving in such applications,
therefore minimizing the overhead of
context switching. A fast interrupt cannot
be interrupted.

IRQ (interrupt) IRQ 0x00000018 Occurs when an external device asserts the
IRQ pin on the processor. An interrupt
cannot be interrupted except by an FIQ.

Prefetch abort Abort 0x0000000C Occurs when an attempt to fetch an
instruction results in a memory fault. The
exception is raised when the instruction
enters the execute stage of the pipeline.

Undefined
instructions

Undefined 0x00000004 Occurs when an instruction not in the
instruction set reaches the execute stage of
the pipeline.

Software interrupt Supervisor 0x00000008 Generally used to allow user mode
programs to call the OS. The user program
executes a SWI instruction with an
argument that identifies the function the
user wishes to perform.

Table 14.4

ARM
Interrupt

Vector

+ Summary

n Processor organization

n Register organization

n User-visible registers

n Control and status registers

n Instruction cycle

n The indirect cycle

n Data flow

n The x86 processor family

n Register organization

n Interrupt processing

n Instruction pipelining

n Pipelining strategy

n Pipeline performance

n Pipeline hazards

n Dealing with branches

n Intel 80486 pipelining

n The Arm processor

n Processor organization

n Processor modes

n Register organization

n Interrupt processing

Chapter 14

Processor Structure
and Function

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

