
+

William Stallings

Computer Organization

and Architecture

10th Edition

© 2016 Pearson Education, Inc., Hoboken,

NJ. All rights reserved.

+ Chapter 13
Instruction Sets: Addressing
Modes and Formats

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Addressing Modes

Immediate

Direct

Indirect

Register

Register indirect

Displacement

Stack

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

(b) Direct

Memory

Instruction

A A

Operand

(a) Immediate

Instruction

Operand

Registers

(d) Register

Instruction

R R

(c) Indirect

Memory

Instruction

Registers

(f) Displacement

Memory

Instruction

AR

Registers

(e) Register Indirect

Memory

Instruction

Top of Stack

Register

(g) Stack

Figure 13.1 Addressing Modes

Implicit

Instruction

Operand

Operand Operand

Operand

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Mode Algorithm Principal Advantage Principal Disadvantage

Immediate Operand = A No memory reference Limited operand magnitude

Direct EA = A Simple Limited address space

Indirect EA = (A) Large address space Multiple memory references

Register EA = R No memory reference Limited address space

Register indirect EA = (R) Large address space Extra memory reference

Displacement EA = A + (R) Flexibility Complexity

Stack EA = top of stack No memory reference Limited applicability

Table 13.1

Basic Addressing Modes

+
Immediate Addressing

 Simplest form of addressing

 Operand = A

 This mode can be used to define and use constants or set initial
values of variables

 Typically the number will be stored in twos complement form

 The leftmost bit of the operand field is used as a sign bit

 Advantage:

 No memory reference other than the instruction fetch is required to
obtain the operand, thus saving one memory or cache cycle in the
instruction cycle

 Disadvantage:

 The size of the number is restricted to the size of the address field, which,
in most instruction sets, is small compared with the word length

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Direct Addressing

Address field
contains the

effective address of
the operand

Effective address
(EA) = address field

(A)

Was common in
earlier generations

of computers

Requires only one
memory reference

and no special
calculation

Limitation is that it
provides only a
limited address

space

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Indirect Addressing

 Reference to the address of a word in memory which contains a
full-length address of the operand

 EA = (A)

 Parentheses are to be interpreted as meaning contents of

 Advantage:

 For a word length of N an address space of 2N is now available

 Disadvantage:

 Instruction execution requires two memory references to fetch the operand

 One to get its address and a second to get its value

 A rarely used variant of indirect addressing is multilevel or cascaded
indirect addressing

 EA = (. . . (A) . . .)

 Disadvantage is that three or more memory references could be required
to fetch an operand

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Register Addressing

Address field
refers to a

register rather
than a main

memory address

EA = R

Advantages:

• Only a small
address field is
needed in the
instruction

• No time-consuming
memory references
are required

Disadvantage:

• The address space
is very limited

+
Register Indirect Addressing

 Analogous to indirect addressing

 The only difference is whether the address field refers to a

memory location or a register

 EA = (R)

 Address space limitation of the address field is overcome by

having that field refer to a word-length location containing an

address

 Uses one less memory reference than indirect addressing

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Displacement Addressing

 Combines the capabilities of direct addressing and register
indirect addressing

 EA = A + (R)

 Requires that the instruction have two address fields, at least one
of which is explicit

 The value contained in one address field (value = A) is used directly

 The other address field refers to a register whose contents are added
to A to produce the effective address

 Most common uses:

 Relative addressing

 Base-register addressing

 Indexing

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Relative Addressing

The implicitly referenced register is the program counter (PC)

• The next instruction address is added to the address field to produce the EA

• Typically the address field is treated as a twos complement number for this
operation

• Thus the effective address is a displacement relative to the address of the
instruction

Exploits the concept of locality

Saves address bits in the instruction if most memory references
are relatively near to the instruction being executed

+
Base-Register Addressing

 The referenced register contains a main memory address and
the address field contains a displacement from that address

 The register reference may be explicit or implicit

 Exploits the locality of memory references

 Convenient means of implementing segmentation

 In some implementations a single segment base register is
employed and is used implicitly

 In others the programmer may choose a register to hold the
base address of a segment and the instruction must reference it
explicitly

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Indexing

 The address field references a main memory address and the referenced
register contains a positive displacement from that address

 The method of calculating the EA is the same as for base-register addressing

 An important use is to provide an efficient mechanism for performing
iterative operations

 Autoindexing

 Automatically increment or decrement the index register after each reference to it

 EA = A + (R)

 (R) (R) + 1

 Postindexing

 Indexing is performed after the indirection

 EA = (A) + (R)

 Preindexing

 Indexing is performed before the indirection

 EA = (A + (R))

+
Stack Addressing

 A stack is a linear array of locations

 Sometimes referred to as a pushdown list or last-in-first-out queue

 A stack is a reserved block of locations

 Items are appended to the top of the stack so that the block is partially filled

 Associated with the stack is a pointer whose value is the address of the top of
the stack

 The stack pointer is maintained in a register

 Thus references to stack locations in memory are in fact register indirect addresses

 Is a form of implied addressing

 The machine instructions need not include a memory
reference but implicitly operate on the top of the stack

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 LA = linear address

 (X) = contents of X

 SR = segment register

 PC = program counter
 A = contents of an address field in the instruction

 R = register

 B = base register

 I = index register

S = scaling factor

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Mode Algorithm

Immediate Operand = A

Register Operand LA = R

Displacement LA = (SR) + A

Base LA = (SR) + (B)

Base with Displacement LA = (SR) + (B) + A

Scaled Index with Displacement LA = (SR) + (I) ´ S + A

Base with Index and Displacement LA = (SR) + (B) + (I) + A

Base with Scaled Index and Displacement LA = (SR) + (I) ´ S + (B) + A

Relative LA = (PC) + A

Table 13.2

x86 Addressing Modes

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

0x200 0x200

0x20C0x20C 0xC

r1

r1
Original

base register

(b) Preindex

(c) Postindex

Destination

register

for STR

Updated

base register

0x5

0x5
r0

Offset

STRB r0, [r1, #12]!

0x200 0x200

0x20C0x20C 0xC

r1

r1
Original

base register

Figure 13.3 ARM Indexing Methods

Destination

register

for STR

Updated

base register

0x5

0x5

r0

Offset

STRB r0, [r1], #12

0x200 0x200

0x20C0xC

r1
Original

base register

(a) Offset

Destination

register

for STR

0x5

0x5
r0

Offset

STRB r0, [r1, #12]

+
ARM Data Processing Instruction Addressing

and Branch Instructions

 Data processing instructions

 Use either register addressing or a mixture of register and

immediate addressing

 For register addressing the value in one of the register operands

may be scaled using one of the five shift operators

 Branch instructions

 The only form of addressing for branch instructions is immediate

 Instruction contains 24 bit value

 Shifted 2 bits left so that the address is on a word boundary

 Effective range ± 32MB from from the program counter

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 13.4 ARM Load/Store Multiple Addressing

0x20C

0x210

0x214

0x20C(r0)

(r1)

(r4)

(r0)

(r1)

(r4)

(r0)

(r1)

(r4)

(r0)

(r1)

(r4) 0x208

0x204

0x200

0x218

r10

Base register

Increment

after (IA)

Increment

before (IB)

Decrement

after (DA)

Decrement

before (DB)

LDMxx r10, {r0, r1, r4}

STMxx r10, {r0, r1, r4}

Instruction Formats

Define the
layout of the

bits of an
instruction, in

terms of its
constituent

fields

Must include
an opcode

and, implicitly
or explicitly,
indicate the
addressing

mode for each
operand

For most
instruction

sets more than
one

instruction
format is used

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Instruction Length

 Most basic design issue

 Affects, and is affected by:

 Memory size

 Memory organization

 Bus structure

 Processor complexity

 Processor speed

 Should be equal to the memory-transfer length or one should

be a multiple of the other

 Should be a multiple of the character length, which is usually

8 bits, and of the length of fixed-point numbers

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Allocation of Bits

Number of
addressing

modes

Number of
operands

Register
versus

memory

Number of
register sets

Address
range

Address
granularity

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Memory Reference Instructions

Opcode D/I Z/C Displacement

0 2 3 4 5 11

Input/Output Instructions

1 1 0 Device Opcode

0 2 3 8 9 11

Register Reference Instructions

Group 1 Microinstructions

1 1 1 0 CLA CLL CMA CML RAR RAL BSW IAC

0 1 2 3 4 5 6 7 8 9 10 11

Group 2 Microinstructions

1 1 1 1 CLA SMA SZA SNL RSS OSR HLT 0

0 1 2 3 4 5 6 7 8 9 10 11

Group 3 Microinstructions

1 1 1 1 CLA MQA 0 MQL 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11

D/I = Direct/Indirect address

Z/C = Page 0 or Current page

CLA = Clear Accumulator

CLL = Clear Link

CMA = CoMplement Accumulator

CML = CoMplement Link

RAR = Rotate Accumultator Right

RAL = Rotate Accumulator Left

BSW = Byte SWap

IAC = Increment ACcumulator

SMA = Skip on Minus Accumulator

SZA = Skip on Zero Accumulator

SNL = Skip on Nonzero Link

RSS = Reverse Skip Sense

OSR = Or with Switch Register

HLT = HaLT

MQA = Multiplier Quotient into Accumulator

MQL = Multiplier Quotient Load

Figure 13.5 PDP-8 Instruction Formats

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Opcode Register I
Index

Register
Memory Address

0 8 9 12 14 17 18 35

I = indirect bit

Figure 13.6 PDP-10 Instruction Format

+
Variable-Length Instructions

 Variations can be provided efficiently and compactly

 Increases the complexity of the processor

 Does not remove the desirability of making all of the

instruction lengths integrally related to word length

 Because the processor does not know the length of the next

instruction to be fetched a typical strategy is to fetch a number of

bytes or words equal to at least the longest possible instruction

 Sometimes multiple instructions are fetched

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Opcode Opcode Offet1 2 3

4 5 6

7

10

11

12

13

Numbers below fields indicate bit length

Source and Destination each contain a 3-bit addr essing mode field and a 3-bit register number

FP indicates one of four floating-point registers

R indicates one of the general-purpose registers

CC is the condition code field

8

9

RSource SourceDestinationOpcode

4

Opcode

8

Opcode

10

Opcode

12

CC

4

FP

2

Destination

6

Destination

6

Opcode

13

Opcode

16

Opcode

4

Source

6

Destination

6

Memory Address

16

R

3

Opcode

7

Source

6

Source

6

Destination

6

Destination

6

Memory Address

16

Memory Address

16

Memory Address

16

Memory Address 1

16

Memory Address 2

16

R

3

Opcode

8

FP

2

Opcode

10

Opcode

4

Source

6

7 8 836 66

Figure 13.7 Instruction Formats for the PDP-11

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Opcode for RSB

Hexadecimal

Format

Assembler Notation

and Description

Explanation

0

8 bits

5

D 4

5 9

B 0

C 4

6 4

0 1

A B

1 9

C 1

0 5

5 0

4 2

D F

RSB

Return from subroutine

Opcode for CLRL

Register R9

CLRL R9

Clear register R9

Opcode for MOVW

Word displacement mode,

Register R4

Byte displacement mode,

Register R11

25 in hexadecimal

356 in hexadecimal

MOVW 356(R4), 25(R11)

Move a word from address

that is 356 plus contents

of R4 to address that is

25 plus contents of R11

Opcode for ADDL3

Short literal 5

Register mode R0

Index prefix R2

Indirect word relative

(displacement from PC)

ADDL3 #5, R0, @A[R2]

Add 5 to a 32-bit integer in

R0 and store the result in

location whose address is

sum of A and 4 times the

contents of R2

Amount of displacement from

PC relative to location A

Figure 13.8 Examples of VAX Instructions

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 13.9 x86 Instruction Format

Mod

0, 1, 2, 3, or 4 bytes 0, 1, 2, or 4 bytes 0, 1, 2, or 4 bytes1, 2, or 3 bytes

0 or 1

bytes

0 or 1

bytes

0 or 1

bytes

0 or 1

bytes

0 or 1

bytes

0 or 1

bytes

Instruction prefixes Opcode

01234567 01234567

ModR/m SIB Displacement Immediate

Instruction

prefix

Segment

override

Operand

size

override

Address

size

override

Reg/Opcode R/M Scale Index Base

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Thumb-2 Instruction Set

 The only instruction set available on the Cortex-M microcontroller
products

 Is a major enhancement to the Thumb instruction set architecture (ISA)

 Introduces 32-bit instructions that can be intermixed freely with the older 16-
bit Thumb instructions

 Most 32-bit Thumb instructions are unconditional, whereas almost all ARM
instructions can be conditional

 Introduces a new If-Then (IT) instruction that delivers much of the functionality
of the condition field in ARM instructions

 Delivers overall code density comparable with Thumb, together with the
performance levels associated with the ARM ISA

 Before Thumb-2 developers had to choose between Thumb for size and
ARM for performance

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Address Contents Address Contents

101 0010 0010 101 2201 101 2201

102 0001 0010 102 1202 102 1202

103 0001 0010 103 1203 103 1203

104 0011 0010 104 3204 104 3204

201 0000 0000 201 0002 201 0002

202 0000 0000 202 0003 202 0003

203 0000 0000 203 0004 203 0004

204 0000 0000 204 0000 204 0000

 (a) Binary program (b) Hexadecimal program

Address Instruction Label Operation Operand

101 LDA 201 FORMUL LDA I

102 ADD 202 ADD J

103 ADD 203 ADD K

104 STA 204 STA N

201 DAT 2 I DATA 2

202 DAT 3 J DATA 3

203 DAT 4 K DATA 4

204 DAT 0 N DATA 0

 (c) Symbolic program (d) Assembly program

Figure 13.14 Computation of the Formula N = I + J+ K

+ Summary

 Addressing modes

 Immediate addressing

 Direct addressing

 Indirect addressing

 Register addressing

 Register indirect addressing

 Displacement addressing

 Stack addressing

 Assembly language

 x86 addressing modes

 ARM addressing modes

 Instruction formats

 Instruction length

 Allocation of bits

 Variable-length instructions

 X86 instruction formats

 ARM instruction formats

Chapter 13

Instruction Sets:

Addressing Modes

and Formats

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

