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+
Boolean Algebra

n Mathematical discipline used to design and analyze the 
behavior of the digital circuitry in digital computers and other 
digital systems

n Named after George Boole
n English mathematician
n Proposed basic principles of the algebra in 1854

n Claude Shannon suggested Boolean algebra could be used to 
solve problems in relay-switching circuit design

n Is a convenient tool:
n Analysis

n It is an economical way of describing the function of digital circuitry

n Design
n Given a desired function, Boolean algebra can be applied to develop a 

simplified implementation of that function
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+
Boolean Variables and Operations

n Makes use of variables and operations
n Are logical

n A variable may take on the value 1 (TRUE) or 0 (FALSE)

n Basic logical operations are AND, OR, and NOT

n AND
n Yields true (binary value 1) if and only if both of its operands are true

n In the absence of parentheses the AND operation takes precedence 
over the OR operation

n When no ambiguity will occur the AND operation is represented by 
simple concatenation instead of the dot operator

n OR
n Yields true if either or both of its operands are true

n NOT
n Inverts the value of its operand
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(b) Boolean Operators Extended to More than Two Inputs (A, B, . . .) 
 

Operation Expression Output = 1 if 
AND A • B • … All of the set {A, B, …} are 1. 
OR A + B + … Any of the set {A, B, …} are 1. 

NAND   

� 

A•B•… Any of the set {A, B, …} are 0. 
NOR   

� 

A+B+… All of the set {A, B, …} are 0. 

XOR A ⊕ B ⊕ … The set {A, B, …} contains an 
odd number of ones. 

 

Table 11.1   Boolean Operators

(a) Boolean Operators of Two Input Variables 



Basic Postulates 
A • B = B • A A + B = B + A Commutative Laws 

A • (B + C) = (A • B) + (A • C) A + (B • C) = (A + B) • (A + C) Distributive Laws 

1 • A = A 0 + A = A Identity Elements 

A • A  = 0 A + A  = 1 Inverse Elements 

Other Identities 
0 • A = 0 1 + A = 1  
A • A = A A + A = A  

A • (B • C) = (A • B) • C A + (B + C) = (A + B) + C Associative Laws 

A • B = A + B  A + B = A • B  DeMorgan's Theorem 
 

Table 11.2   
Basic Identities of Boolean Algebra
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Figure 11.1   Basic Logic Gates
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Figure 11.2   Some Uses of NAND Gates
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Figure 11.3   Some Uses of NOR Gates
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Combinational Circuit
An interconnected set of 
gates whose output at any 
time is a function only of the 
input at that time

The appearance of the input 
is followed almost 
immediately by the 
appearance of the output, 
with only gate delays

Consists of n binary inputs 
and m binary outputs

Can be defined in three 
ways:
• Truth table

• For each of the 2n possible 
combinations of input signals, 
the binary value of each of the 
m output signals is listed

• Graphical symbols
• The interconnected layout of 

gates is depicted
• Boolean equations

• Each output signal is 
expressed as a Boolean 
function of its input signals
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A B C F 
0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 0 

 

Table 11.3  
A Boolean Function of Three Variables 
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F

Figure 11.4   Sum-of-Products Implementation of Table 11.3
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Figure 11.5  Product-of-Sums Implementation of Table 11.3
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Figure 11.6   Simplified Implementation of Table 11.3

B

C

A

F



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

AB

1

(a) F = AB + AB

00 01 11 10

00

00

01

11

10

01 11 10

00

0

1 

01 11 10
1

BC

A
1

(b) F = ABC + ABC + ABC

1
1

CD

AB

1

(c) F = ABCD + ABCD + ABCD

1
1

C

B

D
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 Input  Output 
Number A B C D Number W X Y Z 

0 0 0 0 0 1 0 0 0 1 
1 0 0 0 1 2 0 0 1 0 
2 0 0 1 0 3 0 0 1 1 
3 0 0 1 1 4 0 1 0 0 
4 0 1 0 0 5 0 1 0 1 
5 0 1 0 1 6 0 1 1 0 
6 0 1 1 0 7 0 1 1 1 
7 0 1 1 1 8 1 0 0 0 
8 1 0 0 0 9 1 0 0 1 
9 1 0 0 1 0 0 0 0 0 

1 0 1 0  d d d d 
1 0 1 1  d d d d 
1 1 0 0  d d d d 
1 1 0 1  d d d d 
1 1 1 0  d d d d 

Don't 
care 
con-

dition 

! 

" 

# 
# # 

$ 

# 
# 
# 

 
1 1 1 1  d d d d 

 

Table 11.4   Truth Table for the One-Digit Packed Decimal Incrementer
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Table 11.4   
Truth Table for the One-Digit Packed 

Decimal Incrementer
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Product Term Index A B C D  
A BCD 1 0 0 0 1  
ABCD 5 0 1 0 1  
ABCD 6 0 1 1 0  
ABCD  12 1 1 0 0  
ABCD 7 0 1 1 1  
ABCD 11 1 0 1 1  
ABCD 13 1 1 0 1  
ABCD 15 1 1 1 1  

 

Table 11.5  
First Stage of Quine-McCluskey Method

(for F = ABCD + AB D + AB  + A CD + BCD + BC  + B D + D) 
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 ABCD ABCD ABCD  ABCD ABCD ABCD  ABCD D 

BD X X   X  X  

ACD       X  ⊗ 
ABC     X  ⊗   

ABC   X  ⊗      

ACD X    ⊗     

 

Table 11.6
Last Stage of Quine-McCluskey Method

(for F = ABCD + AB D + AB  + A CD + BCD + BC  + B D + D)
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Figure 11.11  NAND Implementation of Table 11.3
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Figure 11.12  4-to-1 Multiplexer Representation
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S2 S1 F 
0 0 D0 
0 1 D1 
1 0 D2 
1 1 D3 

 

Table 11.7  
4-to-1 Multiplexer Truth Table 
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Figure 11.13  Multiplexer Implementation
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Figure 11.14  Multiplexer Input to Program Counter
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Figure 11.15  Decoder with 3 Inputs and 23 = 8 Outputs
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Figure 11.16  Address Decoding
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Data input

n-bit
destination

address 2n outputs
n-to-2n
decoder

Figure 11.17  Implementation of a Demultiplexer Using a Decoder
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Read-Only Memory (ROM)

n Memory that is implemented with combinational circuits
n Combinational circuits are often referred to as “memoryless” 

circuits because their output depends only on their current input 
and no history of prior inputs is retained

n Memory unit that performs only the read operation
n Binary information stored in a ROM is permanent and is created 

during the fabrication process
n A given input to the ROM (address lines) always produces the 

same output (data lines)
n Because the outputs are a function only of the present inputs, ROM 

is a combinational circuit
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Input  Output 
X1 X2 X3 X4  Z1 Z2 Z3 Z4 
0 0 0 0  0 0 0 0 
0 0 0 1  0 0 0 1 
0 0 1 0  0 0 1 1 
0 0 1 1  0 0 1 0 
0 1 0 0  0 1 1 0 
0 1 0 1  0 1 1 1 
0 1 1 0  0 1 0 1 
0 1 1 1  0 1 0 0 
1 0 0 0  1 1 0 0 
1 0 0 1  1 1 0 1 
1 0 1 0  1 1 1 1 
1 0 1 1  1 1 1 0 
1 1 0 0  1 0 1 0 
1 1 0 1  1 0 1 1 
1 1 1 0  1 0 0 1 
1 1 1 1  1 0 0 0 

 

Table 11.8  
Truth Table for a ROM 
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Figure 11.18  A 64-Bit ROM
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(a) Single-Bit Addition  (b) Addition with Carry Input 
A B Sum Carry  Cin A B Sum Cout 
0 0 0 0  0 0 0 0 0 
0 1 1 0  0 0 1 1 0 
1 0 1 0  0 1 0 1 0 
1 1 0 1  0 1 1 0 1 
     1 0 0 1 0 
     1 0 1 0 1 
     1 1 0 0 1 
     1 1 1 1 1 

 

Table 11.9  
Binary Addition Truth Tables 
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Figure 11.19  4-Bit Adder
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Figure 11.20  Implementation of an Adder
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Figure 11.21  Construction of a 32-Bit Adder Using 8-Bit Adders
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Sequential Circuit
Current output 

depends not only 
on the current 

input, but also on 
the past history 

of inputs

Makes use of 
combinational 

circuits

Sequential

Circuit

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



+
Flip-Flops

n Simplest form of sequential circuit

n There are a variety of flip-flops, all of which share two 
properties:

1. The flip-flop is a bistable device.  It exists in one of two 
states and, in the absence of input, remains in that state.  
Thus, the flip-flop can function as a 1-bit memory.

2. The flip-flop has two outputs, which are always the 
complements of each other.
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Figure 11.22   The S-R Latch Implemented with NOR Gates
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Figure 11.23   NOR S-R Latch Timing Diagram
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Table 11.10   The S-R Latch 
 
 

(a) Characteristic Table  (b) Simplified Characteristic Table 
Current 
Inputs 

SR 

Current 
State 
Qn 

Next State 
Qn+1 

 S R Qn+1 

00 0 0  0 0 Qn 
00 1 1  0 1 0 
01 0 0  1 0 1 
01 1 0  1 1 — 
10 0 1     
10 1 1     
11 0 —     
11 1 —     

 
(c) Response to Series of Inputs 

 
t 0 1 2 3 4 5 6 7 8 9 
S 1 0 0 0 0 0 0 0 1 0 
R 0 0 0 1 0 0 1 0 0 0 

Qn+1 1 1 1 0 0 0 0 0 1 1 
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Figure 11.24   Clocked S-R Flip Flop
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Figure 11.25   D Flip Flop
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Figure 11.26   J-K Flip Flop
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Figure 11.27  Basic Flip-Flops

Graphical Symbol Truth Table
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Figure 11.29    5-Bit Shift Register



+ Counter

n A register whose value is easily incremented by 1 modulo 
the capacity of the register

n After the maximum value is achieved the next increment sets 
the counter value to 0

n An example of a counter in the CPU is the program counter

n Can be designated as: 
n Asynchronous

n Relatively slow because the output of one flip-flop triggers a 
change in the status of the next flip-flop

n Synchronous
n All of the flip-flops change state at the same time
n Because it is faster it is the kind used in CPUs
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Figure 11.31   Design of a Synchronous Counter

(a) Truth table

(b) Karnaugh maps

(c) Logic diagram 
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Table 11.11  PLD Terminology 
 
Programmable Logic Device (PLD) 
 A general term that refers to any type of integrated circuit used for implementing digital 
hardware, where the chip can be configured by the end user to realize different designs. 
Programming of such a device often involves placing the chip into a special programming unit, 
but some chips can also be configured “in-system”. Also referred to as a field-programmable 
device (FPD). 
 
Programmable Logic Array (PLA) 
 A relatively small PLD that contains two levels of logic, an AND-plane and an OR-plane, 
where both levels are programmable. 
 
Programmable Array Logic (PAL) 
 A relatively small PLD that has a programmable AND-plane followed by a fixed OR-
plane. 
 
Simple PLD (SPLD) 
 A PLA or PAL. 
 
Complex PLD (CPLD) 
 A more complex PLD that consists of an arrangement of multiple SPLD-like blocks 
on a single chip. 
 
Field-Programmable Gate Array (FPGA) 
 A PLD featuring a general structure that allows very high logic capacity. Whereas 
CPLDs feature logic resources with a wide number of inputs (AND planes), FPGAs offer more 
narrow logic resources. FPGAs also offer a higher ratio of flip-flops to logic resources than do 
CPLDs. 
 
Logic Block 
 A relatively small circuit block that is replicated in an array in an FPD. When a circuit is 
implemented in an FPD, it is first decomposed into smaller sub-circuits that can each be mapped 
into a logic block. The term logic block is mostly used in the context of FPGAs, but it could also 
refer to a block of circuitry in a CPLD. 
 

Table 

11.11  

PLD 

Terminology 
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Figure 11.32  An Example of a Programmable Logic Array
ABC + AB

AB

AB + AC

AC

“AND” array

“OR” array



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.33  Structure of an FPGA
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Figure 11.34  A Simple FPGA Logic Block
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+ Summary

n Boolean Algebra
n Gates
n Combinational Circuits

n Implementation of Boolean 
Functions

n Multiplexers
n Decoders
n Read-Only-Memory
n Adders

n Sequential Circuits
n Flip-Flops
n Registers
n Counters

n Programmable Logic Devices
n Programmable Logic Array
n Field-Programmable Gate 

Array

Chapter 11
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