
+

William Stallings
Computer Organization
and Architecture
10th Edition

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

+ Chapter 8
Operating System Support

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

I/O devices
and

networking

System interconnect
(bus)

Software

Application
programming interface

Instruction Set
Architecture

Hardware

Main
memory

Memory
translation

Execution hardware

Figure 8.1 Computer Hardware and Software Structure

Application programs

Application
binary interface

Operating system

Libraries/utilities

+
Operating System (OS) Services

n The most important system program

n Masks the details of the hardware from the programmer and
provides the programmer with a convenient interface for
using the system

n The OS typically provides services in the following areas:
n Program creation

n Program execution

n Access to I/O devices

n Controlled access to files

n System access

n Error detection and response

n Accounting

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Interfaces

Instruction set
architecture

(ISA)

Defines the machine
language instructions that

a computer can follow

Boundary between
hardware and software

Application
binary

interface (ABI)

Defines a standard for
binary portability across

programs

Defines the system call
interface to the operating
system and the hardware
resources and services
available in a system
through the user ISA

Application
programming
interface (API)

Gives a program access to
the hardware resources

and services available in a
system through the user
ISA supplemented with

high-level language (HLL)
library calls

Using an API enables
application software to be

ported easily to other
systems that support the

same API

nKey interfaces in a typical computer system:

+ Operating System
as

Resource Manager

A computer is a set of resources for the movement,
storage, and processing of data and for the control of
these functions

n The OS is responsible for managing these resources

The OS as a control mechanism is unusual in two
respects:

n The OS functions in the same way as ordinary
computer software – it is a program executed by the
processor

n The OS frequently relinquishes control and must
depend on the processor to allow it to regain control

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Memory

Computer System
I/O Devices

Operating
System

Software

Programs
and Data

Processor Processor

OS
Programs

Data

Storage

I/O Controller

I/O Controller

Printers,
keyboards,
digital camera,
etc.

I/O Controller

Figure 8.2 The Operating System as Resource Manager

+
Types of Operating Systems

n Interactive system
n The user/programmer interacts directly with the computer to

request the execution of a job or to perform a transaction

n User may, depending on the nature of the application,
communicate with the computer during the execution of the job

n Batch system
n Opposite of interactive

n The user’s program is batched together with programs from other
users and submitted by a computer operator

n After the program is completed results are printed out for the
user

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Early Systems

n From the late 1940s to the mid-1950s the
programmer interacted directly with the computer
hardware – there was no OS
n Processors were run from a console consisting of

display lights, toggle switches, some form of input device and a
printer

n Problems:
n Scheduling

n Sign-up sheets were used to reserve processor time
n This could result in wasted computer idle time if the user finished

early
n If problems occurred the user could be forced to stop before

resolving the problem
n Setup time

n A single program could involve
n Loading the compiler plus the source program into memory
n Saving the compiled program
n Loading and linking together the object program and common

functions

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Interrupt
Processing

Device
Drivers

Job
Sequencing

Control Language
Interpreter

User
Program

Area

Monitor

Boundary

Figure 8.3 Memory Layout for a Resident Monitor

+ From the View of the Processor . . .
n Processor executes instructions from the portion of main memory containing the monitor

n These instructions cause the next job to be read in another portion of main memory
n The processor executes the instruction in the user’s program until it encounters an ending or

error condition
n Either event causes the processor to fetch its next instruction from the monitor program

n The monitor handles setup and scheduling
n A batch of jobs is queued up and executed as rapidly as possible with no idle time

n Job control language (JCL)
n Special type of programming language used to provide instructions to the monitor

n Example:
n $JOB
n $FTN
n ... Some Fortran instructions
n $LOAD
n $RUN
n ... Some data
n $END

n Monitor, or batch OS, is simply a computer program
n It relies on the ability of the processor to fetch instructions from various portions of main

memory in order to seize and relinquish control alternately

**Each FORTRAN instruction and each item of
data is on a separate punched card or a separate record on
tape. In addition to FORTRAN and data lines, the job
includes job control instructions, which are
denoted by the beginning “$”.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Desirable Hardware Features

n Memory protection
n User program must not alter

the memory area containing
the monitor

n The processor hardware
should detect an error and
transfer control to the monitor

n The monitor aborts the job,
prints an error message, and
loads the next job

n Timer
n Used to prevent a job from

monopolizing the system

n If the timer expires an
interrupt occurs and control
returns to monitor

n Privileged instructions
n Can only be executed by the

monitor
n If the processor encounters

such an instruction while
executing a user program an
error interrupt occurs

n I/O instructions are
privileged so the monitor
retains control of all I/O
devices

n Interrupts
n Gives the OS more flexibility

in relinquishing control to
and regaining control from
user programs

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Read one record from file 15 µs

Execute 100 instructions 1 µs

Write one record to file 15 µs

TOTAL 31 µs

Percent CPU utilization

!

=
1

31
= 0.032 = 3.2%

Figure 8.4 System Utilization Example

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Run Wait WaitRun

Time

Run Wait WaitRun

Run
A

Run
A

Run WaitWait WaitRun

Run
B Wait WaitRun

B

Run
A

Run
A

Run
B

Run
B

Run
C

Run
C

(a) Uniprogramming

Time
(b) Multiprogramming with two programs

Time
(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 8.5 Multiprogramming Example

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 JOB1 JOB2 JOB3

Type of job Heavy compute Heavy I/O Heavy I/O
Duration 5 min 15 min 10 min
Memory required 50 M 100 M 80 M
Need disk? No No Yes
Need terminal? No Yes No
Need printer? No No Yes

Table 8.1
Sample Program Execution Attributes

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Uniprogramming Multiprogramming

Processor use 20% 40%

Memory use 33% 67%

Disk use 33% 67%
Printer use 33% 67%

Elapsed time 30 min 15 min

Throughput rate 6 jobs/hr 12 jobs/hr

Mean response time 18 min 10 min

Table 8.2
Effects of Multiprogramming on Resource Utilization

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

0%

0 5 10 15 20 25 30
minutes

time

(a) Uniprogramming

JOB1 JOB2 JOB3Job History

Printer

Terminal

Disk

Memory

CPU

100%
0%

100%
0%

100%
0%

100%
0%

100%

0%

0 5 10 15
minutes

(b) Multiprogramming

Figure 8.6 Utilization Histograms

JOB1
JOB2

JOB3

Job History

Printer

Terminal

Disk

Memory

CPU

100%
0%

100%
0%

100%
0%

100%
0%

100%

time

+
Time Sharing Systems

n Used when the user interacts directly with the computer

n Processor’s time is shared among multiple users

n Multiple users simultaneously access the system through
terminals, with the OS interleaving the execution of each user
program in a short burst or quantum of computation

n Example:
n If there are n users actively requesting service at one time, each

user will only see on the average 1/n of the effective computer
speed

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Batch Multiprogramming Time Sharing

Principal objective Maximize processor use Minimize response time

Source of directives to
operating system

Job control language
commands provided with the
job

Commands entered at the
terminal

Table 8.3
Batch Multiprogramming versus Time Sharing

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 8.4 Types of Scheduling

Long-term scheduling The decision to add to the pool of processes to be executed

Medium-term scheduling The decision to add to the number of processes that are

partially or fully in main memory

Short-term scheduling The decision as to which available process will be executed

by the processor

I/O scheduling The decision as to which process's pending I/O request

shall be handled by an available I/O device

Determines which
programs are submitted for

processing

Once submitted, a job
becomes a process for the

short term scheduler

In some systems a newly
created process begins in a
swapped-out condition, in
which case it is added to a

queue for the medium-term
scheduler

Batch system
•Newly submitted jobs are routed to disk and
held in a batch queue

•The long-term scheduler creates processes
from the queue when it can

Time-sharing system
•A process request is generated when a
user attempts to connect to the system

•OS will accept all authorized comers until
the system is saturated

•At that point a connection request is met
with a message indicating that the system
is full and to try again later

Long Term Scheduling

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Medium-Term Scheduling

and Short-Term Scheduling

n Part of the swapping
function

n Swapping-in decision is
based on the need to manage
the degree of
multiprogramming

n Swapping-in decision will
consider the memory
requirements of the
swapped-out processes

n Also known as the
dispatcher

n Executes frequently and
makes the fine-grained
decision of which job to
execute next

Medium-Term Short-Term

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

New Ready

Blocked

Running Exit

Figure 8.7 Five-State Process Model

Admit
Dispatch

Timeout

Release

Event
Wait

Event
Occurs

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Identifier

Figure 8.8 Process Control Block

State

Priority

Program counter

Memory pointers

Context data

I/O status
information

Accounting
information

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Operating system

Figure 8.9 Scheduling Example

Service handler
Scheduler

Interrupt handler

A
"Running"

B
"Ready"

Other partitions

(a) (b) (c)

Operating system

Service handler
Scheduler

Interrupt handler

A
"Waiting"

B
"Ready"

Other partitions

Operating system

Service handler
Scheduler

Interrupt handler

A
"Waiting"

B
"Running"

Other partitions

In
control

In
control

In
control

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Service
Call

Handler (code)

Service Call
from Process

Interrupt
from Process

Pass Control
to Process

Interrupt
from I/O

Interrupt
Handler (code)

Short-Term
Scheduler

(code)

Long-
Term
Queue

Short-
Term
Queue

I/O
Queues

Operating System

Figure 8.10 Key Elements of an Operating System for Multiprogramming

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 8.11 Queuing Diagram Representation of Processor Scheduling

End

Long-term
queue

Short-term
queue

Admit
Processor

I/O 1 Queue

I/O 1
Occurs

I/O 2
Occurs

I/O n
Occurs

I/O 2 Queue

I/O n Queue

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Operating
system

Operating
system

Disk storage

Long-term
queue

Long-term
queue

Intermediate
queue

Completed jobs
and user sessions

Completed jobs
and user sessions

(a) Simple job scheduling

Figure 8.12 The Use of Swapping

(b) Swapping

Main
memory

Disk storage

Main
memory

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Operating System
8 M

Operating System
8 M

8 M
2 M

4 M

6 M

8 M

8 M

12 M

16 M

8 M

8 M

8 M

8 M

8 M

8 M

(a) Equal-size partitions (b) Unequal-size partitions

Figure 8.13 Example of Fixed Partitioning of a 64-Mbyte Memory

Logical address
- expressed as a location relative

to the beginning of the program

Physical address
- an actual location in main

memory

Base address
- current starting location of the

process

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

(a)

Operating
System 8M

20M

36M

56M

(b)

Operating
System

Process 1 20M

14M

22M

(c)

Operating
System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating
System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating
System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating
System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating
System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating
System

Process 4

Process 3

Figure 8.14 The Effect of Dynamic Partitioning

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

14

13

15

16 In
use

Main
memory

(a) Before (b) After

Figure 8.15 Allocation of Free Frames

Process A

Free frame list
13
14
15
18
20

Free frame list
20

Process A
page table

18
13
14
15

Page 0
Page 1
Page 2
Page 3

In
use

In
use

17

18

19

20

14

13

15

16 In
use

In
use

Main
memory

Page 0
of A

Page 3
of A

Page 2
of A

Page 1
of A

In
use

17

18

19

20

Process A
Page 0
Page 1
Page 2
Page 3

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

30

18

13

14

15

1

page
number

relative address
within page

Logical
Address

Physical
Address

Main
Memory

Process A
Page Table

Figure 8.16 Logical and Physical Addresses

30 Page 3
of A

Page 0
of A

Page 2
of A

Page 1
of A 13

14

15

16

17

18

13

frame
number

relative address
within frame

+ Virtual Memory

n Each page of a process is brought in only when it is needed

n Principle of locality
n When working with a large process execution may be confined to a small section of a

program (subroutine)
n It is better use of memory to load in just a few pages
n If the program references data or branches to an instruction on a page not in main

memory, a page fault is triggered which tells the OS to bring in the desired page

n Advantages:
n More processes can be maintained in memory
n Time is saved because unused pages are not swapped in and out of memory

n Disadvantages:
n When one page is brought in, another page must be thrown out (page replacement)
n If a page is thrown out just before it is about to be used the OS will have to go get the

page again
n Thrashing

n When the processor spends most of its time swapping pages rather than
executing instructions

Demand Paging

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

30

18

13

14

15

1

page
number

relative address
within page

Logical
Address

Physical
Address

Main
Memory

Process A
Page Table

Figure 8.16 Logical and Physical Addresses

30 Page 3
of A

Page 0
of A

Page 2
of A

Page 1
of A 13

14

15

16

17

18

13

frame
number

relative address
within frame

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Page # Offset

Frame #
m bits

m bits

n bits

n bits
Virtual address

hash
function

Page #
Process

ID

Control
bits

Chain

Inverted page table
(one entry for each

physical memory frame)

Real address

Offset

Figure 8.17 Inverted Page Table Structure

i

0

j

2m – 1

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Start

CPU checks the TLB

Page table
entry in
TLB?

Access Page Table

Update TLB

Yes

Yes

Yes

No

No

No

CPU generates
physical address

OS instructs CPU
to read the page

from disk

CPU activates
I/O hardware

Page fault
handling routine

Return to
faulted instruction

Page tables
updated

Figure 8.18 Operation of Paging and Translation Lookaside Buffer (TLB) [FURH87]

Perform page
replacement

Page transferred
from disk to

main memory

Page
in main

memory?

Memory
full?

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Page # Offset

Virtual Address

TLB Operation

Figure 8.19 Translation Lookaside Buffer and Cache Operation

Page Table

Main
Memory

TLB miss

Miss

Hit Value

TLB
hit

TLB

Tag Remainder

Real Address

Cache Operation

Cache+

Value

+
Segmentation

n Usually visible to the
programmer

n Provided as a convenience for
organizing programs and data
and as a means for associating
privilege and protection
attributes with instructions and
data

n Allows the programmer to
view memory as consisting of
multiple address spaces or
segments

n Advantages:

n Simplifies the handling of
growing data structures

n Allows programs to be
altered and recompiled
independently without
requiring that an entire set
of programs be re-linked
and re-loaded

n Lends itself to sharing
among processes

n Lends itself to protection

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

n Includes hardware for both segmentation and paging

n Unsegmented unpaged memory
n Virtual address is the same as the physical address
n Useful in low-complexity, high performance controller

applications

n Unsegmented paged memory
n Memory is viewed as a paged linear address space
n Protection and management of memory is done via paging
n Favored by some operating systems

n Segmented unpaged memory
n Memory is viewed as a collection of logical address spaces
n Affords protection down to the level of a single byte
n Guarantees that the translation table needed is on-chip when

the segment is in memory
n Results in predictable access times

n Segmented paged memory
n Segmentation is used to define logical memory partitions

subject to access control, and paging is used to manage the
allocation of memory within the partitions

n Operating systems such as UNIX System V favor this view

Intel
x86

Memory
Management

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Segmentation

n Each virtual address consists of a 16-bit segment
reference and a 32-bit offset
n Two bits of segment reference deal with the protection mechanism
n 14 bits specify segment

n Unsegmented virtual memory is 232 = 4Gbytes

n Segmented virtual memory is 246=64 terabytes (Tbytes)

n Physical address space employs a 32-bit address for a maximum
of 4 Gbytes

n Virtual address space is divided into two parts
n One-half is global, shared by all processors
n The remainder is local and is distinct for each process

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Segment Protection

n Associated with each segment are two forms of protection:
n Privilege level
n Access attribute

n There are four privilege levels
n Most protected (level 0)
n Least protected (level 3)

n Privilege level associated with a data segment is its “classification”

n Privilege level associated with a program segment is its “clearance”

n An executing program may only access data segments for which its

clearance level is lower than or equal to the privilege level of the data
segment

n The privilege mechanism also limits the use of certain instructions

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 8.20 Intel x86 Memory Management Formats

T
I

Index

(a) Segment selector

(b) Linear address

(c) Segment descriptor (segment table entry)

(d) Page directory entry

(e) Page table entry

Directory

Base 31...24

Page frame address 31...12 AVL 0 A P

Base 23...16

Segment limit 15...0Base 15...0

G P S TypeDPL
Segment

limit
19...16

D
/
B

P
W
T

P
C
D

P
S

U
S

R
W

Page frame address 31...12 AVL D A P
P
W
T

P
C
D

U
S

R
W

A
V
L

Table Offset

RPL

15

31 22 21 12 11 0

31 2223 1920 1213 7824 141516 11 0

31 12 7 6 5 4 3 2 111 9 0

31 12 7 6 5 4 3 2 111 9 0

3 2 1 0

TI — Table indicator
RPL — Requestor privilege level

AVL — Available for use by system software
Base — Segment base address
D/B — Default operation size
DPL — Descriptor privilege size
G — Granularity

PWT — Write through
US — User/supervisor
RW — Read-write
P — Present

AVL — Available for systems programmer use
P — Page size
A — Accessed
PCD — Cache disable

D — Dirty

L — 64-bit code segment
 (64-bit mode only)
P — Segment present
Type — Segment type
S — Descriptor type

= reserved

L

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 8.5
x86 Memory Management Parameters (page 1 of 2)

Segment Descriptor (Segment Table Entry)

Base
 Defines the starting address of the segment within the 4-GByte linear address space.
D/B bit
 In a code segment, this is the D bit and indicates whether operands and addressing modes

are 16 or 32 bits.
Descriptor Privilege Level (DPL)
 Specifies the privilege level of the segment referred to by this segment descriptor.
Granularity bit (G)
 Indicates whether the Limit field is to be interpreted in units by one byte or 4 KBytes.
Limit
 Defines the size of the segment. The processor interprets the limit field in one of two ways,

depending on the granularity bit: in units of one byte, up to a segment size limit of 1
MByte, or in units of 4 KBytes, up to a segment size limit of 4 GBytes.

S bit
 Determines whether a given segment is a system segment or a code or data segment.
Segment Present bit (P)
 Used for nonpaged systems. It indicates whether the segment is present in main memory.

For paged systems, this bit is always set to 1.
Type
 Distinguishes between various kinds of segments and indicates the access attributes.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Page Directory Entry and Page Table Entry

Accessed bit (A)
 This bit is set to 1 by the processor in both levels of page tables when a read or write

operation to the corresponding page occurs.
Dirty bit (D)
 This bit is set to 1 by the processor when a write operation to the corresponding page

occurs.
Page Frame Address
 Provides the physical address of the page in memory if the present bit is set. Since page

frames are aligned on 4K boundaries, the bottom 12 bits are 0, and only the top 20 bits are
included in the entry. In a page directory, the address is that of a page table.

Page Cache Disable bit (PCD)
 Indicates whether data from page may be cached.
Page Size bit (PS)
 Indicates whether page size is 4 KByte or 4 MByte.
Page Write Through bit (PWT)
 Indicates whether write-through or write-back caching policy will be used for data in the

corresponding page.
Present bit (P)
 Indicates whether the page table or page is in main memory.
Read/Write bit (RW)
 For user-level pages, indicates whether the page is read-only access or read/write access for

user-level programs.
User/Supervisor bit (US)
 Indicates whether the page is available only to the operating system (supervisor level) or is

available to both operating system and applications (user level).

Table 8.5
x86 Memory Management Parameters (page 2 of 2)

+ Paging

n Segmentation may be disabled
n In which case linear address space is used

n Two level page table lookup
n First, page directory

n 1024 entries max

n Splits 4 Gbyte linear memory into 1024 page groups of 4 Mbyte

n Each page table has 1024 entries corresponding to 4 Kbyte
pages

n Can use one page directory for all processes, one per process
or mixture

n Page directory for current process always in memory

n Use TLB holding 32 page table entries

n Two page sizes available, 4k or 4M

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 8.21 Intel x86 Memory Address Translation Mechanisms

Segment
descriptor

Logical address

Offset
Segment
selector

Global descriptor
table (GDT)

Linear address
space

Page

Segment
base address

Segment

Page directory

Segmentation Paging

Lin. Addr.

Linear address
Dir Table Offset

Entry

Page table

Physical
address

space

Entry

Phy. Addr.

Page

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Access
control

hardware

Access bits,
domain

Access bits,
domain

Abort

Control
bits

Physical address

Physical
address

Physical
address

Virtual
address

Virtual address

ARM
core

TLB

Memory Management Unit (MMU)

Figure 8.22 ARM Memory System Overview

Cache
line fetch
hardware

Virtual
memory

translation
hardware

Main
memory

Cache
and

write
buffer

+
Virtual Memory Address
Translation

n The ARM supports memory access
based on either sections or pages

n Supersections (optional)
n Consist of 16-MB blocks of main

memory

n Sections

n Consist of 1-MB blocks of main
memory

n Large pages

n Consist of 64-kB blocks of main
memory

n Small pages

n Consist of 4-kB blocks of main
memory

n Sections and supersections are
supported to allow mapping of a
large region of memory while using
only a single entry in the TLB

n The translation table held in main
memory has two levels:

n First-level table

n Holds section and supersection
translations, and pointers to
second-level table

n Second-level tables
n Hold both large and small page

translations

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Sm
al

l p
ag

e
(4

 K
B)

Figure 8.23 ARM Virtual Memory Address Translation
for Small Pages

Main Memory

Virtual address

Level 1 (L1) page table

Level 2 (L2)
page table

L1 index

L2 PT base addr

page
index

0

0

4095

0

255

01

page base addr 10

111931
L2

index

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

00IGNFault

10PCoarse page table base address

(a) Alternative first-level descriptor formats

(b) Alternative second-level descriptor formats

SBZDomain

010 S PAP
AP
X

AP
X

n
G

X
N

TEXSection base address C B
S
B
Z

Domain

011 S PAP

AP
X

AP
X

n
G

n
G

X
N

Base address
[39:36]

Base address
[35:32]

TEX
Supersection
base address

C B
S
B
Z

Page table

Section

Supersection

00

0123456789101112141531 16

012345891011121420 1924 2331

IGNFault

0192031

Level 1 table index Section indexSection

01920 111231

Level 1 table index Level 2 table index Page index
Small
page

Large page 10Large page base address

(c) Virtual memory address formats

Figure 8.24 ARM Memory Management Formats

SBZTEX

1S

n
G S

X
N

X
N

Small page base address C B

C

AP

AP B

TEXSmall page

01920 1112151631

Level 1 table index Level 2
table index

Page index
Large
page

01920232431

Level 1 table index Supersection indexSupersection

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 8.6 ARM Memory-Management Parameters

Access Permission (AP), Access Permission Extension (APX)
 These bits control access to the corresponding memory region. If an access is made to an
area of memory without the required permissions, a Permission Fault is raised.

Bufferable (B) bit
 Determines, with the TEX bits, how the write buffer is used for cacheable memory.

Cacheable (C) bit
 Determines whether this memory region can be mapped through the cache.

Domain
 Collection of memory regions. Access control can be applied on the basis of domain.

not Global (nG)
 Determines whether the translation should be marked as global (0), or process
specific (1).

Shared (S)
 Determines whether the translation is for not-shared (0), or shared (1) memory.

SBZ
 Should be zero.

Type Extension (TEX)
 These bits, together with the B and C bits, control accesses to the caches, how the write
buffer is used, and if the memory region is shareable and therefore must be kept coherent.

Execute Never (XN)
 Determines whether the region is executable (0) or not executable (1).

+ Access Control
n The AP access control bits in each table entry control access to a region of memory

by a given process

n A region of memory can be designated as:
n No access
n Read only
n Read-write

n The region can be privileged access only, reserved for use by the OS and not by
applications

n ARM employs the concept of a domain:
n Collection of sections and/or pages that have particular access permissions
n The ARM architecture supports 16 domains
n Allows multiple processes to use the same translation tables while maintaining some protection

from each other

n Two kinds of domain access are supported:
n Clients

n Users of domains that must observe the access permissions of the individual sections
and/or pages that make up that domain

n Managers

n Control the behavior of the domain and bypass the access permissions for table entries in
that domain

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Summary

n Operating system overview
n Operating system objectives

and functions
n Types of operating systems

n Scheduling
n Long-term scheduling
n Medium-term scheduling
n Short-term scheduling

n Intel x86 memory
management
n Address space
n Segmentation
n paging

n Memory management
n Swapping
n Partitioning
n Paging
n Virtual memory
n Translation lookaside buffer
n Segmentation

n ARM memory management
n Memory system organization
n Virtual memory address

translation
n Memory-management

formats
n Access control

Chapter 8

Operating System
Support

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

