
+

William Stallings
Computer Organization
and Architecture
10th Edition

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

+ Chapter 2
Performance Issues

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Designing for Performance
n The cost of computer systems continues to drop dramatically, while the performance

and capacity of those systems continue to rise equally dramatically

n Today’s laptops have the computing power of an IBM mainframe from 10 or 15 years ago

n Processors are so inexpensive that we now have microprocessors we throw away

n Desktop applications that require the great power of today’s microprocessor-based
systems include:
n Image processing
n Three-dimensional rendering
n Speech recognition
n Videoconferencing
n Multimedia authoring
n Voice and video annotation of files
n Simulation modeling

n Businesses are relying on increasingly powerful servers to handle transaction and
database processing and to support massive client/server networks that have
replaced the huge mainframe computer centers of yesteryear

n Cloud service providers use massive high-performance banks of servers to
satisfy high-volume, high-transaction-rate applications for a broad spectrum of
clients

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Microprocessor Speed

Pipelining

Branch prediction

Superscalar
execution

Data flow analysis

Speculative
execution

• Processor moves data or instructions into a
conceptual pipe with all stages of the pipe processing
simultaneously

• Processor looks ahead in the instruction code fetched
from memory and predicts which branches, or groups
of instructions, are likely to be processed next

• This is the ability to issue more than one instruction in
every processor clock cycle. (In effect, multiple
parallel pipelines are used.)

• Processor analyzes which instructions are dependent
on each other’s results, or data, to create an
optimized schedule of instructions

• Using branch prediction and data flow analysis, some
processors speculatively execute instructions ahead
of their actual appearance in the program execution,
holding the results in temporary locations, keeping
execution engines as busy as possible

Techniques built into contemporary processors include:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Performance
Balance

Increase the number
of bits that are

retrieved at one time
by making DRAMs
“wider” rather than

“deeper” and by
using wide bus data

paths

Change the DRAM
interface to make it

more efficient by
including a cache or

other buffering
scheme on the DRAM

chip

Reduce the frequency
of memory access by

incorporating
increasingly complex

and efficient cache
structures between
the processor and

main memory

Increase the
interconnect

bandwidth between
processors and

memory by using
higher speed buses
and a hierarchy of
buses to buffer and
structure data flow

n Adjust the organization and
architecture to compensate
for the mismatch among the
capabilities of the various
components

n Architectural examples
include:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

101 102 103 104 105 106 107 108 109 1010 1011

Data Rate (bps)

Ethernet modem
(max speed)

Figure 2.1 Typical I/O Device Data Rates

Graphics display

Wi-Fi modem
(max speed)

Hard disk

Optical disc

Laser printer

Scanner

Mouse

Keyboard

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Improvements in Chip
Organization and Architecture

n Increase hardware speed of processor
n Fundamentally due to shrinking logic gate size

n More gates, packed more tightly, increasing clock rate

n Propagation time for signals reduced

n Increase size and speed of caches
n Dedicating part of processor chip

n Cache access times drop significantly

n Change processor organization and architecture
n Increase effective speed of instruction execution

n Parallelism

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Problems with Clock Speed and
Login Density

n Power
n Power density increases with density of logic and clock speed
n Dissipating heat

n RC delay
n Speed at which electrons flow limited by resistance and

capacitance of metal wires connecting them
n Delay increases as the RC product increases
n As components on the chip decrease in size, the wire

interconnects become thinner, increasing resistance
n Also, the wires are closer together, increasing capacitance

n Memory latency
n Memory speeds lag processor speeds

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

Figure 2.2 Processor Trends

0.1

1

10

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)
Frequency (MHz)
Power (W)
Cores

102

103

104

105

106

107

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The use of multiple
processors on the same chip
provides the potential to
increase performance
without increasing the clock
rate

Strategy is to use two simpler
processors on the chip rather
than one more complex
processor

With two processors larger
caches are justified

As caches became larger it
made performance sense to
create two and then three
levels of cache on a chip

Multicore

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Many Integrated Core (MIC)

Graphics Processing Unit (GPU)

n Leap in performance as well
as the challenges in
developing software to exploit
such a large number of cores

n The multicore and MIC
strategy involves a
homogeneous collection of
general purpose processors
on a single chip

n Core designed to perform
parallel operations on graphics
data

n Traditionally found on a plug-in
graphics card, it is used to
encode and render 2D and 3D
graphics as well as process
video

n Used as vector processors for a
variety of applications that
require repetitive computations

MIC GPU

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

Amdahl’s
Law

n Gene Amdahl

n Deals with the potential speedup of a
program using multiple processors
compared to a single processor

n Illustrates the problems facing industry
in the development of multi-core
machines

n Software must be adapted to a highly
parallel execution environment to
exploit the power of parallel
processing

n Can be generalized to evaluate and
design technical improvement in a
computer system

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 2.3 Illustration of Amdahl’s Law

T

(1 – f)T

(1 – f)T

fT

fT
N

1 f 1 1
N

T

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

Number of Processors

Figure 2.4 Amdahl’s Law for Multiprocessors

S
p

ed
u

p
f = 0.95

f = 0.90

f = 0.75

f = 0.5

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Little’s Law

n Fundamental and simple relation with broad applications

n Can be applied to almost any system that is statistically in
steady state, and in which there is no leakage

n Queuing system
n If server is idle an item is served immediately, otherwise an

arriving item joins a queue
n There can be a single queue for a single server or for multiple

servers, or multiple queues with one being for each of multiple
servers

n Average number of items in a queuing system equals the
average rate at which items arrive multiplied by the time
that an item spends in the system
n Relationship requires very few assumptions
n Because of its simplicity and generality it is extremely useful

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 2.5 System Clock

quartz
crystal

From Computer Desktop Encyclopedia
1998, The Computer Language Co.

analog to
digital

conversion

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Ic p m k τ

Instruction set
architecture X X

Compiler technology X X X
Processor
implementation X X

Cache and memory
hierarchy X X

Table 2.1 Performance Factors and System Attributes

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Ic – number of executed instructions
p – number of processor cycles needed to execute an instr.
m – number of memory references per instr.
k – ration between memory and processor cycle
! – processor cycle

The use of benchmarks to
compare systems involves

calculating the mean value of a
set of data points related to

execution time

The three
common
formulas
used for

calculating a
mean are:

• Arithmetic
• Geometric
• Harmonic© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

0 2 4 6 8 9 101 3 5 7 11

MD
AM
GM
HM

(a)

MD
AM
GM
HM

(b)

MD
AM
GM
HM

(c)

MD
AM
GM
HM

(d)

MD
AM
GM
HM

(e)

MD
AM
GM
HM

(f)

MD
AM
GM
HM

MD = median
AM = arithmetic mean
GM = geometric mean
HM = harmonic mean

(a) Constant (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11)
(b) Clustered around a central value (3, 5, 6, 6, 7, 7, 7, 8, 8, 9, 11)
(c) Uniform distribution (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
(d) Large-number bias (1, 4, 4, 7, 7, 9, 9, 10, 10, 11, 11)
(e) Small-number bias(1, 1, 2, 2, 3, 3, 5, 5, 8, 8, 11)
(f) Upper outlier (11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
(g) Lower outlier (1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11)

(g)

Figure 2.6 Comparison of Means on Various Data Sets
(each set has a maximum data point value of 11)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

n An Arithmetic Mean (AM) is an
appropriate measure if the sum of all the
measurements is a meaningful and
interesting value

n The AM is a good candidate for
comparing the execution time
performance of several systems

Arithmetic

Mean
For example, suppose we were interested in using a system
for large-scale simulation studies and wanted to evaluate several
alternative products. On each system we could run the simulation
multiple times with different input values for each run, and then
take the average execution time across all runs. The use of
multiple runs with different inputs should ensure that the results are
not heavily biased by some unusual feature of a given input set. The
AM of all the runs is a good measure of the system’s performance
on simulations, and a good number to use for system comparison.

n The AM used for a time-based variable, such as
program execution time, has the important property
that it is directly proportional to the total time

n If the total time doubles, the mean value doubles

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Computer
A time
(secs)

Computer
B time
(secs)

Computer
C time
(secs)

Computer
A rate

(MFLOPS)

Computer
B rate

(MFLOPS)

Computer
C rate

(MFLOPS)
Program 1
(108 FP
ops)

2.0 1.0 0.75 50 100 133.33

Program 2
(108 FP
ops)

0.75 2.0 4.0 133.33 50 25

Total
execution
time

2.75 3.0 4.75

Arithmetic
mean of
times

1.38 1.5 2.38

Inverse of
total
execution
time
(1/sec)

0.36 0.33 0.21

Arithmetic
mean of
rates

 91.67 75.00 79.17

Harmonic
mean of
rates

 72.72 66.67 42.11

Table 2.2

A Comparison
of Arithmetic

and
Harmonic
Means for

Rates

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 2.3 A Comparison of Arithmetic and Geometric Means for Normalized
Results

(a) Results normalized to Computer A

 Computer A time Computer B time Computer C time
Program 1 2.0 (1.0) 1.0 (0.5) 0.75 (0.38)

Program 2 0.75 (1.0) 2.0 (2.67) 4.0 (5.33)
Total execution time 2.75 3.0 4.75
Arithmetic mean of
normalized times

 1.00 1.58 2.85

Geometric mean of
normalized times

1.00 1.15 1.41

(b) Results normalized to Computer B

 Computer A time Computer B time Computer C time
Program 1 2.0 (2.0) 1.0 (1.0) 0.75 (0.75)

Program 2 0.75 (0.38) 2.0 (1.0) 4.0 (2.0)
Total execution time 2.75 3.0 4.75
Arithmetic mean of
normalized times

 1.19 1.00 1.38

Geometric mean of
normalized times

0.87 1.00 1.22

 © 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 2.4 Another Comparison of Arithmetic and Geometric Means for
Normalized Results

(a) Results normalized to Computer A

 Computer A time Computer B time Computer C time
Program 1 2.0 (1.0) 1.0 (0.5) 0.20 (0.1)

Program 2 0.4 (1.0) 2.0 (5.0) 4.0 (10)
Total execution time 2.4 3.00 4.2
Arithmetic mean of
normalized times

 1.00 2.75 5.05

Geometric mean of
normalized times

1.00 1.58 1.00

(b) Results normalized to Computer B

 Computer A time Computer B time Computer C time
Program 1 2.0 (2.0) 1.0 (1.0) 0.20 (0.2)

Program 2 0.4 (0.2) 2.0 (1.0) 4.0 (2)
Total execution time 2.4 3.00 4.2
Arithmetic mean of
normalized times

 1.10 1.00 1.10

Geometric mean of
normalized times

0.63 1.00 0.63

 © 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Benchmark Principles

nDesirable characteristics of a benchmark
program:

1. It is written in a high-level language, making it
portable across different machines

2. It is representative of a particular kind of
programming domain or paradigm, such as
systems programming, numerical
programming, or commercial programming

3. It can be measured easily
4. It has wide distribution

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
System Performance Evaluation
Corporation (SPEC)

n Benchmark suite
n A collection of programs, defined in a high-level language

n Together attempt to provide a representative test of a computer in
a particular application or system programming area

n SPEC
n An industry consortium

n Defines and maintains the best known collection of benchmark
suites aimed at evaluating computer systems

n Performance measurements are widely used for comparison and
research purposes

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

SPEC

CPU2006

n Best known SPEC benchmark suite

n Industry standard suite for processor
intensive applications

n Appropriate for measuring
performance for applications that
spend most of their time doing
computation rather than I/O

n Consists of 17 floating point programs
written in C, C++, and Fortran and 12
integer programs written in C and C++

n Suite contains over 3 million lines of
code

n Fifth generation of processor intensive
suites from SPEC

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Benchmark Reference
time

(hours)

Instr
count

(billion)

Language Application
Area

Brief Description

400.perlbench 2.71 2,378 C
Programming
Language

PERL programming
language interpreter, applied
to a set of three programs.

401.bzip2 2.68 2,472 C
Compression General-purpose data

compression with most work
done in memory, rather than
doing I/O.

403.gcc 2.24 1,064 C C Compiler Based on gcc Version 3.2,
generates code for Opteron.

429.mcf 2.53 327 C
Combinatoria
l
Optimization

Vehicle scheduling
algorithm.

445.gobmk 2.91 1,603 C
Artificial
Intelligence

Plays the game of Go, a
simply described but deeply
complex game.

456.hmmer 2.59 3,363 C
Search Gene
Sequence

Protein sequence analysis
using profile hidden Markov
models.

458.sjeng 3.36 2,383 C
Artificial
Intelligence

A highly ranked chess
program that also plays
several chess variants.

462.libquantum 5.76 3,555 C
Physics /
Quantum
Computing

Simulates a quantum
computer, running Shor's
polynomial-time
factorization algorithm.

464.h264ref 6.15 3,731 C
Video
Compression

H.264/AVC (Advanced
Video Coding) Video
compression.

471.omnetpp 1.74 687 C++
Discrete
Event
Simulation

Uses the OMNet++ discrete
event simulator to model a
large Ethernet campus
network.

473.astar 1.95 1,200 C++ Path-finding
Algorithms

Pathfinding library for 2D
maps.

483.xalancbmk 1.92 1,184 C++
XML
Processing

A modified version of
Xalan-C++, which
transforms XML documents
to other document types.

Table 2.5

SPEC
CPU2006
Integer

Benchmarks

(Table can be found on page 69 in the textbook.)© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 2.6

SPEC
CPU2006

Floating-Point
Benchmarks

Benchmark
Reference

time (hours)
Instr count

(billion) Language Application Area Brief Description

410.bwaves 3.78 1,176 Fortran Fluid Dynamics
Computes 3D transonic
transient laminar viscous
flow.

416.gamess 5.44 5,189 Fortran Quantum
Chemistry

Quantum chemical
computations.

433.milc 2.55 937 C Physics / Quantum
Chromodynamics

Simulates behavior of
quarks and gluons

434.zeusmp 2.53 1,566 Fortran Physics / CFD
Computational fluid
dynamics simulation of
astrophysical phenomena.

435.gromacs 1.98 1,958 C, Fortran
Biochemistry /
Molecular
Dynamics

Simulate Newtonian
equations of motion for
hundreds to millions of
particles.

436.cactusAD
M 3.32 1,376 C, Fortran Physics / General

Relativity
Solves the Einstein
evolution equations.

437.leslie3d 2.61 1,273 Fortran Fluid Dynamics Model fuel injection flows.

444.namd 2.23 2,483 C++
Biology /
Molecular
Dynamics

Simulates large
biomolecular systems.

447.dealII 3.18 2,323 C++ Finite Element
Analysis

Program library targeted at
adaptive finite elements and
error estimation.

450.soplex 2.32 703 C++
Linear
Programming,
Optimization

Test cases include railroad
planning and military airlift
models.

453.povray 1.48 940 C++ Image Ray-tracing 3D Image rendering.

454.calculix 2.29 3,04` C, Fortran Structural
Mechanics

Finite element code for
linear and nonlinear 3D
structural applications.

459.GemsFDT
D

2.95 1,320 Fortran Computational
Electromagnetics

Solves the Maxwell
equations in 3D.

465.tonto 2.73 2,392 Fortran Quantum
Chemistry

Quantum chemistry
package, adapted for
crystallographic tasks.

470.lbm 3.82 1,500 C Fluid Dynamics Simulates incompressible
fluids in 3D.

481.wrf 3.10 1,684 C, Fortran Weather Weather forecasting model

482.sphinx3 5.41 2,472 C Speech recognition Speech recognition
software.

(Table can be found on page 70

in the textbook.)© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Terms Used in SPEC Documentation

n Benchmark
n A program written in a high-level

language that can be compiled
and executed on any computer
that implements the compiler

n System under test
n This is the system to be evaluated

n Reference machine
n This is a system used by SPEC to

establish a baseline performance
for all benchmarks
n Each benchmark is run and

measured on this machine to
establish a reference time for
that benchmark

n Base metric
n These are required for all

reported results and have strict
guidelines for compilation

n Peak metric
n This enables users to attempt to

optimize system performance by
optimizing the compiler output

n Speed metric
n This is simply a measurement of the

time it takes to execute a compiled
benchmark
n Used for comparing the ability of

a computer to complete single
tasks

n Rate metric
n This is a measurement of how many

tasks a computer can accomplish in
a certain amount of time
n This is called a throughput,

capacity, or rate measure
n Allows the system under test to

execute simultaneous tasks to
take advantage of multiple
processors

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Start

Get next
program

Run program
three times

Select
median value

Ratio(prog) =
Tref(prog)/TSUT(prog)

More
programs?

Compute geometric
mean of all ratios

End

Yes No

Figure 2.7 SPEC Evaluation Flowchart

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 2.7 Some SPEC CINT2006 Results

(a) Sun Blade 1000

Benchmark Execution
time

Execution
time

Execution
time

Reference
time Ratio

400.perlbench 3077 3076 3080 9770 3.18
401.bzip2 3260 3263 3260 9650 2.96
403.gcc 2711 2701 2702 8050 2.98
429.mcf 2356 2331 2301 9120 3.91
445.gobmk 3319 3310 3308 10490 3.17
456.hmmer 2586 2587 2601 9330 3.61
458.sjeng 3452 3449 3449 12100 3.51
462.libquantum 10318 10319 10273 20720 2.01
464.h264ref 5246 5290 5259 22130 4.21
471.omnetpp 2565 2572 2582 6250 2.43
473.astar 2522 2554 2565 7020 2.75
483.xalancbmk 2014 2018 2018 6900 3.42
 © 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

(b) Sun Blade X6250

Benchmark Execution
time

Execution
time

Execution
time

Reference
time Ratio Rate

400.perlbench 497 497 497 9770 19.66 78.63
401.bzip2 613 614 613 9650 15.74 62.97
403.gcc 529 529 529 8050 15.22 60.87
429.mcf 472 472 473 9120 19.32 77.29
445.gobmk 637 637 637 10490 16.47 65.87
456.hmmer 446 446 446 9330 20.92 83.68
458.sjeng 631 632 630 12100 19.18 76.70
462.libquantum 614 614 614 20720 33.75 134.98
464.h264ref 830 830 830 22130 26.66 106.65
471.omnetpp 619 620 619 6250 10.10 40.39
473.astar 580 580 580 7020 12.10 48.41
483.xalancbmk 422 422 422 6900 16.35 65.40

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Summary

n Designing for performance

n Microprocessor speed

n Performance balance

n Improvements in chip
organization and
architecture

n Multicore

n MICs

n GPGPUs

n Amdahl’s Law

n Little’s Law

n Basic measures of computer
performance

n Clock speed

n Instruction execution rate

n Calculating the mean

n Arithmetic mean

n Harmonic mean

n Geometric mean

n Benchmark principles

n SPEC benchmarks

Chapter 2

Performance
Issues

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

