University of New Brunswick Computer Science

CS3853: Computer Architecture and Organization

Instructor: Joannah Nanjekye, jnanjeky@unb.ca Due Date: July 24, 2024 – 11:59 PM

ASSIGNMENT 1

Submission instructions:

• Submit a pdf file to the Desire2Learn dropbox

Problem 1. Given the instruction set of the IAS computer:

- Write an assembly language program that loads the integers 6,1,8,2, and 3 from location 300 to 304. The program should sort the contents in the memory locations such that memory location 300 has the lowest value while 304 has the highest value. Write your assembly language programming code in a 3-column format: Address, Opcode (Symbolic), and Operand (5 points).
- Assume that each instruction takes 3 clock cycles to execute (1 fetch, 1 decode, and 1 execute) and a 3MHz clock rate. Calculate the execution time (3 points).

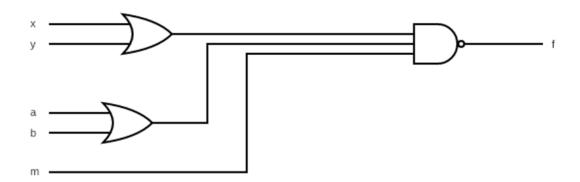
Problem 2. A compiler developer is trying to compare the designs of three machines with their respective CPIs for several instruction categories. All machines have the same instruction set.

Instruction Category	CPI_A	CPI_{B}	CPI_C	Instruction Count
Load/Store	12	11	9	1
Subtract	8	7	5.6	2
Jump	5	4	7	3
Branch	9	7	12	4
Shift	6	5	9	5
Other	22	12	17	3

- (a) Calculate the average CPI for each machine (4 points).
- (b) What is the clock rate for each machine if the execution time is 12s, 15s and 22s for machine A, B and C respectively (3 points).
- (c) Calculate the MIPS for each machine (4 points).

Problem 3. Two processors *simplex* and *vertex* run the same program, with the same input under identical conditions. The program running on vertex takes 30% less time but incurs 25% more CPI compared to the same program running on simplex. If the clock rate of simplex is 5MHz, then:

(a) Calculate the frequency of vertex (6 points).


Problem 4. Given the following assembly language code for a program starting at memory address 300.

```
300
    LOAD
              M(200)
     SUB
              M(201)
301
     JUMP+
              M(303,0:19)
     LOAD
              M(201)
302
     STORE
              M(202)
     JUMP
              M(0,0:15)
303
     LOAD
              M(200)
     STORE
              M(202)
304
     JUMP
              M(0,0:19)
```

- (a) Show the memory contents for an IAS computer (5 points).
- (b) Explain what this program does (2 points).

Problem 5. Implement the function $f(w1, w2, w3) = \sum m(0, 1, 3, 4, 6, 7)$ by using NOT, AND and OR gates (5 points).

Problem 6. In standard cell technology, circuits are built by interconnecting building-block cells that implement simple functions, like basic logic gates. One type of standard cell is the and-or-invert (AOI) cells. Consider the or-and-invert (OAI) cells which can be efficiently built as CMOS complex gates as shown in the Figure below.

- (a) State the function this cell implements (1 point).
- (b) Derive the CMOS complex gate that implements this cell (3 points).

Problem 7. The Figure below depicts the conversion between three-bit binary and Gray codes. The Gray code is one in which consecutive valuations differ in one variable only.

b_2	b_1	b_0	g ₂	g1	g0
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	0	0

- (a) Find the canonical sum-of-products expressions for g_0 , g_1 and g_2 (3 points).
- (b) Find the canonical product-of-sums expressions for $g_0,\,g_1$ and g_2 (3 points).