University of New Brunswick

Computer Science

CS3853: Computer Architecture and Organization Instructor: Joannah Nanjekye, jnanjeky@unb.ca Due Date: August 07, 2024 — 11:59 PM

ASSIGNMENT 3

Submission instructions:

• Submit a pdf file to the Desire2Learn dropbox

Problem 1. Consult the class notes (slides) and discussion on flip-flops to implement the following. In each case use any additional logic gates that are required.

• A T-FF using a D-FF¹

Solution: 6 points — 2 points for transition diagram, 2 points for state table, 2 points for the kmap and final expressions, I dont include these in my solutions

T Input	Outpu	Diment		
	Present State	Next State		
Т	Q _n	Q _{n+1}	D	
0	I 0	0	• 0	
0	1	1	1	
1	0	1	1 1	
1	1	0	0	

 $^{{}^{1}}https://www.allaboutcircuits.com/technical-articles/conversion-of-flip-flops-part-iv-d-flip-flops/$

• A JK-FF using a T-FF²

Solution: 6 points — 2 points for transition diagram, 2 points for state table, 2 points for the kmap and final expressions

JK Inputs		Outpu	Timeut			
		Present State	Next State	- i mput		
J	K	Qn	Q _{n+1}	Т		
0	0 ;	0	0	0		
0	0	1	1 1	0		
0	11	0	0	0		
0	1	1	0	1		
1	0	0	1	1		
1	0	1	1 1	0		
1	1	0	1	1		
1	1	1	0	1		
	у КС 0 1	$\begin{array}{cccc} 00 & 01 & 11 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 \end{array}$	10 3 0 ² 1 ⁸			
		$T = J\overline{Q}_n + J$	KQ _n			

A D-FF from a JK-FF³
Solution: 6 points — 2 points for transition diagram, 2 points for state table, 2 points for the kmap and final expressions

²https://www.allaboutcircuits.com/technical-articles/conversion-of-t-flip-flops-part-v/ ³https://www.electronics-tutorial.net/sequential-logic-circuits/toggle-flip-flop/

A JK-FF using a D-FF
Solution: 6 points — 2 points for transition diagram, 2 points for state table,
2 points for the kmap and final expressions

 $F(J, K, q) = \overline{K}q + J\overline{q}$

Problem 2. Design a synchronous counter using D-FFs and one input x. If x = 0 it counts 1,2,3, 0, 1,2 . . .; if x = 1 it counts 1, 3, 0, 1, 3, Assume that x only changes in 1 or 3 (in which

Combinational and Sequential Circuits Assignment 3

Summer 2024

case there is one combination that will never occur – state 2 and x = 1).

Solution: 12 points — 3 points for transition diagram, 3 points for state table, 3 points for the kmap and final expressions for D_1 , and 3 points for the kmap and final expressions for D_2

Current			$\mathbf{x} = 0$			$\mathbf{x} = 1$				
n_1	n_0)	n_1	n_0	D_1	D_0	n_1	n_0	D_1	D_0
0	0		0	1	0	1	0	1	0	1
0	1		1	0	1	0	1	1	1	1
1	0		1	1	1	1	х	x	х	x
1	1		0	0	0	0	0	0	0	0
$n_1 n_0$										
		(JU	01	11	10				
X	0			1		-				

$$D_1 = \overline{n_1}n_0 + n_1\overline{n_0}$$

$$D_0 = X\overline{n_1} + \overline{n_0}$$