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Twitter provides access to large volumes of data in real time, but is notoriously noisy, hampering its utility
for NLP. In this paper, we target out-of-vocabulary words in short text messages and propose a method
for identifying and normalising lexical variants. Our method uses a classifier to detect lexical variants,
and generates correction candidates based on morphophonemic similarity. Both word similarity and context
are then exploited to select the most probable correction candidate for the word. The proposed method
doesn’t require any annotations, and achieves state-of-the-art performance over an SMS corpus and a novel
dataset based on Twitter. This paper is an extension of Han and Baldwin [2011] and Han et al. [2012], with
significantly expanded experimentation over the original paper.
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1. INTRODUCTION

Micro-blogging services, such as Twitter,! are highly attractive for information extrac-
tion and text mining purposes, as they offer large volumes of real-time data. According
to Twitter [2011], 2, 65, and 200 million messages were posted per day in 2009, 2010,
and first half of 2011, respectively, and the number is still growing. Messages from
Twitter have shown to have utility in applications such as disaster detection [Sakaki
et al. 2010], sentiment analysis [Jiang et al. 2011; Gonzalez-Ibafiez et al. 2011], and
event discovery [Weng and Lee 2011; Benson et al. 2011]. The quality of messages
varies significantly, however, ranging from high-quality newswire-like text to mean-
ingless strings. Typos, ad hoc abbreviations, phonetic substitutions, ungrammatical
structures and emoticons abound in short text messages, causing grief for text pro-
cessing tools [Sproat et al. 2001; Ritter et al. 2010]. For instance, presented with the
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A:2 Han, Cook and Baldwin

input u must be talkin bout the paper but I was thinkin movies (“You must be talking
about the paper but I was thinking movies”),2 the Stanford parser [Klein and Manning
2003; de Marneffe et al. 2006] analyses bout the paper and thinkin movies as a clause
and noun phrase, respectively, rather than a prepositional phrase and verb phrase.

One way to minimise the performance drop of current tools and make full use of
Twitter data, is to re-train text processing tools on this new domain [Gimpel et al.
2011; Liu et al. 2011; Ritter et al. 2011]. An alternative approach is to preprocess mes-
sages to produce a more-standard rendering of these lexical variants. For example, se
u 2morw!!! would be normalised to see you tomorrow! The normalisation approach is
especially attractive as a preprocessing step for applications which rely on keyword
match or word frequency statistics, such as topic trend analysis. For example, earthqu,
eathquake, and earthquakeee — all attested in a Twitter corpus — have the standard
form earthquake; by normalising these types to their standard form, better coverage
can be achieved for keyword-based methods, and better word frequency estimates can
be obtained. We will collectively refer to individual instances of typos, ad hoc abbre-
viations, unconventional spellings, phonetic substitutions and other causes of lexical
deviation as “lexical variants”.

The normalisation task is challenging. It has similarities with spell checking [Peter-
son 1980], but differs in that lexical variants in text messages are often intentionally
generated, whether due to the desire to save characters/keystrokes, for social identity,
or due to convention in this text sub-genre. We propose to go beyond spell checkers, in
performing deabbreviation when appropriate, and recovering the canonical word form
of commonplace shorthands like 64 “before”, which tend to be considered beyond the re-
mit of spell checking [Aw et al. 2006]. The free writing style of text messages makes the
task even more complex, e.g. with word lengthening such as goooood being common-
place for emphasis. In addition, the detection of lexical variants — i.e. distinguishing
lexical variants from out-of-vocabulary words that do not require normalisation — is
rather difficult, due at least in part to the short length of, and noise encountered in,
Twitter messages.

In this paper, we focus on the task of lexical normalisation of English Twitter and
SMS messages, in which out-of-vocabulary (OOV) tokens are normalised to their in-
vocabulary (IV) standard form, i.e. a standard form that is in a dictionary. We further
restrict the task to be a one-to-one normalisation in which one OOV token is nor-
malised to one IV word.

The remainder of this article is organised as follows: after reviewing relevant related
work in Section 2, we offer a more formal definition of the task of lexical normalisa-
tion in Section 3. In Section 4 we analyse a number of linguistic properties of SMS
and Twitter messages to gain some insight into the task of lexical normalisation. We
then propose a context-sensitive method for lexical normalisation, and further present
a manually-annotated lexical normalisation dataset based on Twitter data. We com-
pare the performance of our proposed normalisation method to a number of baselines
and benchmark approaches. In Section 5 we consider the task of lexical variant detec-
tion, an often-overlooked aspect of lexical normalisation. We propose and evaluate a
token-based method for this task. Our findings indicate that poor performance on lex-
ical variant detection leads to poor performance in real-world normalisation tasks. In
response to this finding, in Section 6 we propose a purely type-based dictionary-lookup
approach to normalisation focusing on context insensitive lexical variants. It combines
the detection and normalisation of lexical variants into a single step. In Section 7 we
then show that this new approach achieves state-of-the-art performance. We consider
the impact of lexical normalisation on downstream processing in Section 8. In experi-

2Throughout the paper, we will provide a normalised version of examples as a gloss in double quotes.
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ments on part-of-speech tagging, we find some evidence that pre-normalisation of the
input text can lead to performance improvements. Finally, we offer some concluding
remarks in Section 9.

This article is a revised and extended version of Han and Baldwin [2011] and Han
et al. [2012]. This article further includes the following additional material, not in-
cluded in either of those papers: (1) experiments on the impact of normalisation in
an applied setting (Section 8); (2) baselines for context sensitive lexical normalisation
based on a web-based language model and a spell checker (Section 4.4.1), and a dis-
cussion of the limitations of such approaches; (3) an analysis of the impact of lexical
variants on context-sensitive normalisation (Section 7.2.4).

2. RELATED WORK

The noisy channel model [Shannon 1948] has traditionally been the primary approach
to tackling text normalisation. Given a token #, lexical normalisation is the task of
finding argmax P(s|t) « argmax P(t|s)P(s), where s is the standard form, i.e. an IV
word. Standardly in lexical normalisation, ¢ is assumed to be an OOV token, relative
to a fixed dictionary. In practice, not all OOV tokens should be normalised; i.e. only
lexical variants (e.g. tmrw “tomorrow”) should be normalised and tokens that are OOV
but otherwise not lexical variants (e.g. iPad “iPad”) should be unchanged. Most work
in this area focuses only on the normalisation task itself, oftentimes assuming that the
task of lexical variant detection has already been completed.

Various approaches have been proposed to estimate the error model, P(t|s). For
example, in work on spell-checking, Brill and Moore [2000] improve on a standard
edit-distance approach by considering multi-character edit operations; Toutanova and
Moore [2002] build on this by incorporating phonological information. Li et al. [2006]
utilise distributional similarity [Lin 1998] to correct misspelled search queries.

In text message normalisation, Choudhury et al. [2007] model the letter transforma-
tions and emissions using a hidden Markov model [Rabiner 1989]. Cook and Stevenson
[2009] and Xue et al. [2011] propose multiple simple error models, each of which cap-
tures a particular way in which lexical variants are formed, such as phonetic spelling
(e.g. epik “epic”) or clipping (e.g. walkin “walking”). Nevertheless, optimally weighting
the various error models in these approaches is challenging.

Without pre-categorising lexical variants into different types, Liu et al. [2011] collect
Google search snippets from carefully-designed queries from which they then extract
noisy lexical variant—standard form pairs. These pairs are used to train a conditional
random field [Lafferty et al. 2001] to estimate P(t|s) at the character level. One short-
coming of querying a search engine to obtain training pairs is it tends to be costly
in terms of time and bandwidth. Here we exploit microblog data directly to derive
(lexical variant, standard form) pairs, instead of relying on external resources. In more
recent work, Liu et al. [2012] endeavour to improve the accuracy of top-n normalisa-
tion candidates by integrating human cognitive inference, character-level transforma-
tions and spell checking in their normalisation model. The encouraging results shift
the focus to reranking and promoting the correct normalisation to the top-1 position.
However, like much previous work on lexical normalisation, this work assumes perfect
lexical variant detection.

Aw et al. [2006] and Kaufmann and Kalita [2010] consider normalisation as a ma-
chine translation task using off-the-shelf tools. Essentially, this is also a noisy channel
model, which regards lexical variants and standard forms as a source language and a
target language, and translates from one to the other. The advantage of these methods
are they do not assume that lexical variants have been pre-identified; however, these
methods do rely on large quantities of labelled training data, which is not available
for microblogs. In this paper, we extensively discuss lexical normalisation methods for
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short text message, and compare our proposed methods with benchmarks using differ-
ent evaluation metrics.

3. SCOPING LEXICAL NORMALISATION

Popular micro-blogs such as Twitter attract users from diverse language backgrounds,
and are therefore highly multilingual. Preliminary language identification shows that
English tweets account for less than 50% of the overall data. In this research, we focus
exclusively on the English lexical normalisation task, leaving the more general task of
multilingual lexical normalisation for future work.

We define the lexical normalisation task as follows:

—only OOV words are considered for normalisation;

—normalisation must be to a single-token word, meaning that we would normalise
smokin to smoking, but not imo to in my opinion; a side-effect of this is to permit
lower-register contractions such as gonna as the canonical form of gunna (given that
going to is out of scope as a normalisation candidate, on the grounds of being multi-
token, and assuming that gonna is in-vocabulary).

An immediate implication of our task definition is that lexical variants which hap-
pen to coincide with an IV word (e.g. can’t spelt as cant) are outside the scope of this
research. We also consider deabbreviation of acronyms and initialisms (e.g. imo “in my
opinion”) to largely fall outside the scope of text normalisation, as such abbreviated
forms can be formed freely in standard English. Note that single-word abbreviations
such as gouvt “government” are very much within the scope of lexical normalisation, as
they are OOV and correspond to a single token in their standard lexical form.

Given this definition, a necessary pre-processing step for lexical normalisation is the
identification of candidate tokens for normalisation. Here we examine all tokens that
consist of alphanumeric characters, and categorise them into IVs and OOVs, relative
to a dictionary, and take the OOVs as candidates for lexical normalisation. Note, how-
ever, that the OOVs will include lexical variants, but will also include other word types,
such as neologisms and proper nouns, that happen to not be listed in the dictionary
being used. One challenge for lexical normalisation is therefore to distinguish between
OOV words that should not be normalised (such as hopeable and WikiLeaks, which
are not included in the dictionary we use in our experiments) and lexical variants
requiring normalisation such as typos (e.g. earthquak “earthquake”), register-specific
single-word abbreviations (e.g. lv “love”), and phonetic substitutions (e.g. 2morrow “to-
morrow”). Note that many previous approaches to normalisation — discussed in Sec-
tion 2 — have made the simplifying assumption that lexical variants have already
been identified. In this article, we begin by considering lexical normalisation making
this assumption in Section 4.2. We then address the issue of identifying lexical vari-
ants from amongst OOVs in Section 5, and show that this task is challenging, and that
poor performance at this task negatively impacts overall normalisation performance.
In Section 6 we then propose a new dictionary-based approach to normalisation that
avoids such problems associated with lexical variant identification.

Throughout this paper, we use the GNU aspell dictionary (v6.06)® to determine
whether a token is OOV. In tokenising the text, Twitter mentions (e.g. @twitter), hash-
tags (e.g. #twitter) and URLs (e.g. twitter.com) are excluded from consideration for
normalisation, but left in situ for context modelling purposes. Dictionary lookup of
Internet slang is performed relative to a dictionary of 5021 items collected from the
Internet.* The language filtering of Twitter to automatically identify English tweets

3We remove all one character tokens, except @ and I, and treat RT as an IV word.
4http://www.noslang. com

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



Lexical Normalisation of Short Text Messages A5

05 o —o— New York Times
g ' Twitter data
2 04 \ -~ SMS corpus
3 |
£ Y
9 0.3 Q
[+ \
1S N
2 02 . o
3 & B ha P
8 01— o s SO
. ' oo N o
0.0 - O'“-O———E)———-@---82::@:-_0:’—»@
I I I I I I I I I I I I
0% [10%-20%) [40%-50%) [70%-80%) 100%

OOV tokens per message

Fig. 1. Out-of-vocabulary word distribution in English Gigaword (NYT), Twitter and SMS data

was based on the language identification method of Baldwin and Lui [2010], using
the EuroGOV dataset as training data, a mixed unigram/bigram/trigram byte feature
representation, and a skew divergence nearest prototype classifier.

4. LEXICAL NORMALISATION
4.1. OOV Word Distribution and Type analysis

To get a sense of the relative need for lexical normalisation, we perform an analysis of
the distribution of OOV words in different text types. In particular, we calculate the
proportion of OOV tokens per message (or sentence, in the case of edited text), bin the
messages according to OOV token proportion, and plot the probability mass contained
in each bin for a given text type. The three corpora we compare are the New York
Times (NYT),? SMS,® and Twitter.” The results are presented in Figure 1.

Both SMS and Twitter have a relatively flat distribution, with Twitter having a par-
ticularly long tail: around 15% of tweets have 50% or more OOV tokens. Therefore,
many OOV words in SMS and Twitter co-occur, and this makes context modeling diffi-
cult. In contrast, NYT shows a more Zipfian distribution, despite the large number of
proper nouns it contains.

While this analysis confirms that Twitter and SMS are similar in being heavily laden
with OOV tokens, it does not shed any light on the relative similarity in the makeup
of OOV tokens in each case. To further analyse the two data sources, we extracted two
lists of OOV terms — those found exclusively in SMS, and those found only in Twit-
ter — and sorted each list by frequency. Manual analysis of high-frequency items in
each list revealed that OOV words found only in SMS were largely personal names,
while the Twitter-specific set, on the other hand, contained a more-heterogeneous col-

5Based on 44 million sentences from English Gigaword [David Graff 2003]

6Based on 12.6 thousand SMS messages from How and Kan [2005] and Choudhury et al. [2007].

"Based on 1.37 million tweets collected from the Twitter streaming API from Aug to Oct 2010, and filtered
for monolingual English messages using langid.py [Baldwin and Lui 2010].
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Table |. Categorisation of lexical variants

Category Ratio

Letter&Number 2.36%
Letter 72.44%
Number Substitution 2.76%
Slang 12.20%
Other 10.24%

lection of OOVs including more lexical variants. Despite the difference in size of these
datasets, this finding suggests that Twitter is a richer source of lexical variants, and
hence a noisier data source, and that text normalisation for Twitter needs to be more
nuanced than for SMS.

To further analyse the lexical variants in Twitter, we randomly selected 449 tweets
and manually analysed the sources of lexical variation, to determine the phenomena
that lexical normalisation needs to deal with. We identified 254 token instances of lex-
ical variants, and broke them down into categories, as listed in Table I. “Letter” refers
to instances where letters are missing or there are extraneous letters, but the lexi-
cal correspondence to the target word form is trivially accessible (e.g. shuld “should”).
“Number Substitution” refers to instances of letter—number substitution, where num-
bers have been substituted for phonetically-similar sequences of letters (e.g. 4 “for”).
“Letter&Number” refers to instances which have both extra/missing letters and num-
ber substitution (e.g. b4 “before”). “Slang” refers to instances of Internet slang (e.g.
lol “laugh out loud”), as found in a slang dictionary (see Section 3). “Other” is the re-
mainder of the instances, which is predominantly made up of occurrences of spaces
having been deleted between words (e.g. sucha “such a”).® If a given instance belongs
to multiple error categories (e.g. “Letter&Number” and it is also found in a slang dic-
tionary), we classify it into the higher-occurring category in Table I. Acknowledging
other categorisation methods based on lexical variant format process [Thurlow 2003;
Cook and Stevenson 2009; Xue et al. 2011], our classification is shaped to coordinate
the downstream normalisation.

From Table I, it is clear that “Letter” accounts for the majority of lexical variants in
Twitter, and that most lexical variants are based on morphophonemic variations. This
empirical finding assists in shaping our strategy for lexical normalisation.

4.2. Token-based Normalisation Approach

The proposed lexical normalisation strategy involves two general steps: (1) confusion
set generation, where we identify IV normalisation candidates for a given lexical vari-
ant type; (2) candidate selection, where we select the best standard form of the given
lexical variant from the candidates generated in (1).

4.2.1. Confusion Set Generation. In generation of possible normalisation candidates, the
following steps are utilised. First, inspired by Kaufmann and Kalita [2010], any rep-
etitions of more than 3 letters are reduced back to 3 letters (e.g. cooool is reduced to
coool). Second, IV words within a threshold of 7, in terms of character edit distance of
a given OOV word are considered, a heuristic widely used in spell checkers. Third, the
double metaphone algorithm [Philips 2000] is used to decode the pronunciation of all
IV words; IV words within an edit distance of 7}, of a given OOV word, under phonemic
transcription, are included in the confusion set. This allows us to capture OOV words
such as earthquick “earthquake”. In Table II, we list the recall and average size of the

8Which we don’t touch, in accordance with our task definition.
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ALGORITHM 1: Confusion Set Generation
Input: An OOV word (oov), edit distance thresholds for characters (7.) and phonemic codes
(T},), a dictionary of IV words (DICT), and the proportion of candidates to retain after
ranking by language model (R;.,)
Output: Confusion set for OOV word (Cs.+)
oov = RemoveRepetitions(oov);
Cset — {};
forall the iv € DICT do
if CharacterEditDistance(oov, iv) < T, or PhonemicEditDistance(oov, iv) < T, then
Cset — Cset U {ZU},
end
end
Clist = RankByTrigamModelScoreDesc(Cs.+);
numyist = GetLength(Ciist) *Rim;
index = 0;
Cset — {}7
repeat
Cset < ngt U {Clist[i’ﬂdel‘}}

index++
until indexr > numy;se;

return C.;

Table Il. Recall and average number of candidates for differ-
ent confusion set generation strategies

Criterion Recall Average Candidates
T. <1 40.4% 24
T.<2 76.6% 240
T,=0 55.4% 65
T, <1 83.4% 1248
T, <2 91.0% 9694
T.<2VvT,<1 88.8% 1269
T.<2VvT,<2 92.7% 9515

confusion set generated by the final two strategies with different threshold settings,
based on our evaluation dataset (see Section 4.3).

The recall for lexical edit distance with 7. < 2 is moderately high, but it is unable
to detect the correct candidate for about one quarter of words. The combination of the
lexical and phonemic strategies with T, < 2vT,, < 2is more impressive, but the number
of candidates has also soared. Note that increasing the edit distance further in both
cases leads to an explosion in the average number of candidates, and causes expensive
computational cost. Furthermore, a smaller confusion set is easier for the downstream
candidate selection as well. Thankfully, 7. < 2V T, < 1 leads to an extra increment in
recall to 88.8%, with only a slight increase in the average number of candidates. Based
on these results, we use 7. < 2V T}, < 1 as the basis for confusion set generation.

In addition to generating the confusion set, we rank the candidates based on a tri-
gram language model trained over 1.5GB of clean Twitter data, i.e. tweets which con-
sist of all IV words: despite the prevalence of OOV words in Twitter, the sheer volume
of the data means that it is relatively easy to collect large amounts of all-IV messages.
To train the language model, we used SRILM [Stolcke 2002] with the -<unk> option.
We truncate the ranking to the top 10% of candidates in the experiments, the recall
drops back to 84% with a 90% reduction in candidates. The confusion set generation
process is summarised in Algorithm 1.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.
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Examples of lexical variants where we are unable to generate the standard lexical
form are clippings such as fav “favourite” and convo “conversation”.

4.2.2. Candidate Selection. We select the most likely candidate from the previously gen-
erated confusion set as the basis of normalisation using both lexical string similarity
and contextual information. The information is combined linearly in line with previous
work [Wong et al. 2006; Cook and Stevenson 2009].

Lexical edit distance, phonemic edit distance, prefix substring, suffix substring,
and the longest common subsequence (LCS) are exploited to capture morphophone-
mic similarity. Both lexical and phonemic edit distance (ED) are non-linearly trans-

formed to # so that smaller numbers correspond to higher similarity, as with the
p(ED)

subsequence-based methods.

The prefix and suffix features are intended to capture the fact that leading and
trailing characters are frequently dropped from words, e.g. in cases such as gainst
“against” and talkin “talking”. We calculate the ratio of the LCS over the maximum
string length between lexical variant and the candidate, since the lexical variant can
be either longer or shorter than (or the same size as) the standard form. For example,
mue can represent either me or move, depending on context. We normalise these ratios
so that the sum over candidates for each measure is made to be 1, following Cook and
Stevenson [2009].

For context inference, we employ both language model- and dependency-based fre-
quency features. Ranking by language model score is intuitively appealing for candi-
date selection, but our trigram model is trained only on clean Twitter data and lexical
variants often don’t have sufficient context for the language model to operate effec-
tively, as in bt “but” in say 2 suml bt nt gonna say “say to someone but not going to
say”. To consolidate the context modelling, we obtain dependency features that are not
restricted by contiguity.

First, we use the Stanford parser [Klein and Manning 2003; de Marneffe et al. 2006]
to extract dependencies from the NYT corpus (see Section 4.1). For example, from a
sentence such as One obvious difference is the way they look, we would extract depen-
dencies such as rcmod (way-6,1look-8) and nsubj(look-8,they-7). We then transform
the dependencies into dependency features for each OOV word. Assuming that way
were an OOV word, e.g. we would extract dependencies of the form (look,way,+2), in-
dicating that look occurs 2 words after way. We choose dependencies to represent con-
text because they are an effective way of capturing key relationships between words,
and similar features can easily be extracted from tweets. Note that we don’t record
the dependency type here, because we have no intention of dependency parsing text
messages, due to their noisiness and the volume of the data. The counts of dependency
forms are combined together to derive a confidence score, and the scored dependencies
are stored in a dependency bank. °

Although text messages are of a different genre to edited newswire text, we assume
that words in the two genres participate in similar dependencies based on the common
goal of getting across the message effectively. The dependency features can be used
in noisy contexts and are robust to the effects of other lexical variants, as they do not
rely on contiguity. For example, uz “use” in i did #tt uz me and yu, dependencies can
capture relationships like aux(use-4, do-2), which is beyond the capabilities of the
language model due to the hashtag being treated as a correct OOV word.

9The confidence score is derived from the proportion of dependency tuples. For example, assume context
word CW and OOV word O, and IV normalisation candidates for O of A and B which form dependency
tuples (CW, A, +1), (CW, B, +1) and occur 200 and 300 times respectively in the corpus. The confidence score
for A and B would be calculated as 0.4 and 0.6, respectively.
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4.3. Dataset and Evaluation Metrics

The aim of our experiments is to compare the effectiveness of different methodologies
over two datasets of short messages: (1) an SMS corpus [Choudhury et al. 2007]; and
(2) a novel Twitter dataset developed as part of this research, based on a random sam-
pling of 549 English tweets. The English tweets were annotated by three independent
annotators. All OOV words were automatically pre-identified, and the annotators were
requested to determine: (a) whether each OOV word was a lexical variant or not; and
(b) in the case of tokens judged as lexical variants, what the standard form was, sub-
ject to the task definition outlined in Section 3. The total number of lexical variants
contained in the SMS and Twitter datasets were 3849 and 1184, respectively.'°

As discussed in Sections 2 and 3, much previous work on SMS data has assumed per-
fect lexical variant detection and focused only on the identification of standard forms.
Here we also assume perfect detection of lexical variants in order to compare our pro-
posed approach to previous methods. We consider token-level precision, recall and F-
score (8 = 1), and also evaluate using BLEU [Papineni et al. 2002] over the normalised
form of each message. We consider the latter measure because SMT-based approaches
to normalisation (which we compare our proposed method against) can lead to pertur-
bations of the token stream, vexing evaluation using standard precision, recall and
F-score.

__# correctly normalised tokens

h # normalised tokens

__ # correctly normalised tokens

" # tokens requiring normalisation
__ 2PR

P+R

P

F

4.4. Baselines and Benchmarks

4.4.1. Baselines. We compare our proposed approach to normalisation to some off-the-
shelf tools and simple methods. As the first baseline, we use the Ispell spell checker to
correct lexical variants.!! We also consider a web-based language modeling approach
to normalisation. For a given lexical variant, we first use our method for candidate
set generation (Section 4.2.1) to identify plausible normalisation candidates. We then
identify the lexical variant’s left and right context tokens, and use the Web 1T 5-gram
corpus [Brants and Franz 2006]. to determine the most frequent 3-gram (one word to
each of the left and right of the lexical variant) or 5-gram (two words to each of the
left and right). Lexical normalisation takes the form of simply identifying the centre
word of the highest-frequency n-gram which matches the left/right context, and where
the centre word is a member of the lexical variant’s candidate set. Finally, we also
consider a simple dictionary lookup method using the Internet slang dictionary (Sec-
tion 3) where we substitute any usage of an OOV having an entry in the dictionary by
its listed standard form.

4.4.2. Benchmarks. We further compare our proposed method against previous meth-
ods, which we take as benchmarks. We reimplemented the state-of-art noisy channel
model of Cook and Stevenson [2009] and the SMT approach of Aw et al. [2006], widely
used in SMS normalisation. We implement the SMT approach in Moses [Koehn et al.

10The Twitter dataset is available at http://www.csse.unimelb.edu.au/research/1t/resources/lexnorm/
1We use Ispell 3.1.20 with the -w/-S options to get the most probable correct word.
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Table Ill. Candidate selection effectiveness over different datasets (SC = spell checker; LM3 = 3-gram language
model; LM5 = 5-gram language model; DL = dictionary lookup; NC = SMS noisy channel model [Cook and Steven-
son 2009]; MT = SMT [Aw et al. 2006]; WS = word similarity; CS = context support; WC = WS + DS; DWC = DL +
WS + DS)

Dataset  Eval SC LM3 LM5 DL NC MT wS CS wC DWC
P 0.209 0.116 0.556 0.927 | 0.465 — 0.521 0.116 0.532 0.756
SMS R 0.134 0.064 0.017 0.597 | 0.464 — 0.520 0.116 0.531 0.754
F 0.163 0.082 0.033 0.726 | 0.464 — 0.520 0.116 0.531 0.755
BLEU | 0.607 0.763 0.746 0.801 | 0.746 0.700 | 0.764 0.612 0.772 0.876
P 0.277 0.110 0.324 0.961 | 0.452 — 0.551 0.194 0.571 0.753
Twitter 0.179 0.068 0.020 0.460 | 0.452 — 0.551 0.194 0.571 0.753
F 0.217 0.083 0.037 0.622 | 0.452 — 0.551 0.194 0.571 0.753
BLEU | 0.788 0.779 0.766 0.861 | 0.857 0.728 | 0.878 0.797 0.884 0.934

2007], with synthetic training and tuning data of 90,000 and 1000 sentence pairs, re-
spectively. This data is randomly sampled from the 1.5GB of clean Twitter data, and
errors are generated according to the distribution of the SMS corpus. The 10-fold cross-
validated BLEU score over this data is 0.81.

4.5. Results and Analysis

In Table III, we compare our method (DWC) with the baselines and benchmarks dis-
cussed above. Additionally, we determine the relative effectiveness of the component
methods of our approach, namely dictionary lookup (DL), word similarity (WS), context
support (CS), and combined word similarity and context support (WC).

From Table III, we see that the general performance of our proposed method over
Twitter is better than that over the SMS dataset. To better understand this, we ex-
amined the annotations in the SMS corpus, and found them to be less conservative
than ours, due to the different task specification. In our annotations, the annotators
were instructed to only normalise lexical variants if they had high confidence of how to
normalise, as with talkin “talking”. For lexical variants where they couldn’t be certain
of the standard form, the tokens were left untouched. However, in the SMS corpus,
annotations such as sammis is mistakenly recognised as a variant of “same”, which
actually represents a person name in the context. This leads to a performance drop for
most of methods over the SMS corpus.

Among all the baselines in Table III, the spell checker (SC) performs marginally
better than language model-based approaches (LM3 and LM5), but is inferior to the
dictionary lookup method, and receives the lowest BLEU score of all methods over the
SMS dataset.

Both web n-gram approaches are relatively ineffective at lexical normalisation. The
primary reason for this can be attributed to the simplicity of the context modelling.
Comparing the different-order language models, it is evident that longer n-grams (i.e.
more highly-specified context information) support normalisation with higher preci-
sion. Nevertheless, lexical context in Twitter data is noisy: many OOV words are sur-
rounded by mentions of other Twitter users, hashtags, URLs and other OOV words,
which are uncommon in other text genres. In the web n-gram approach, OOV words
are mapped to the <UNK> flag in the Web 1T corpus construction process, leading to a
loss of context information. Even the relaxed context constraints of the trigram method
suffer from data sparseness, as indicated by the low recall. In fact, due to the temporal
mismatch between the web n-gram corpus (harvested in 2006) and the Twitter data
(harvested in late 2010), lexical variant contexts are often missing in the web n-gram
data, limiting the performance of the web n-gram model for normalisation. Without
the candidate filtering based on confusion sets, we observed that the web n-gram ap-
proach generated fluent-sounding normalisation candidates (e.g. back, over, in, soon,
home and events) for tomoroe in coming tomoroe (“coming tomorrow”) but which lack
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semantic felicity with the original OOV word. This demonstrates the importance of
candidate filtering as proposed.

The dictionary lookup method (“DL”) unsurprisingly achieves the best precision, but
the recall on Twitter is not competitive. Twitter normalisation clearly cannot be tack-
led with such a small-scale dictionary lookup approach, although it is an effective
pre-processing strategy when combined with other wider-coverage normalisation ap-
proaches. Nevertheless, because of the very high precision of the dictionary lookup
method, we will reconsider such an approach, but on a much larger-scale, in Section 6.

The noisy channel method of Cook and Stevenson [2009] (NC) shares similar fea-
tures with our word similarity method (WS). However, when word similarity and con-
text support are combined (WC), our method outperforms NC by about 7% and 12% in
F-score over the SMS and Twitter datasets, respectively. This can be explained as fol-
lows. First, NC is type-based, so all token instances of a given lexical variant will have
the same normalisation. However, the same lexical variant can correspond to different
IV words, depending on context, e.g. hw “how” in so hw many time remaining so I can
calculate it? vs. hw “homework” in I need to finish my hw first. Our word similarity
method does not make the assumption that each lexical variant has a unique standard
form. Second, NC was developed specifically for SMS normalisation, based on obser-
vations about how lexical variants are typically formed in text messages, e.g. clipping
is quite frequent in SMS. In Twitter, word lengthening for emphasis, such as moviiie
“movie”, is common, but this is not the case for text messages; NC therefore performs
poorly on such lexical variants.

The SMT approach is relatively stable on the two datasets, but performs well below
our method. This is due to the limitations of the training data: we obtain the lexical
variants and their standard forms from the SMS corpus, but the lexical variants in the
SMS corpus are not sufficient to cover those in the Twitter data (and we don’t have
sufficient Twitter data to train the SMT method directly). Thus, novel lexical variants
are not recognised and are therefore not normalised. This shows the shortcoming of su-
pervised data-driven approaches that require annotated data to cover all possibilities
of lexical variants in Twitter.

Of the component methods proposed in this research, word similarity (WS) achieves
higher precision and recall than context support (CS), signifying that many of the
lexical variants emanate from morphophonemic variations. However, when combined
with context support, the performance improves over word similarity at a level of sta-
tistical significance (based on randomised estimation, p < 0.05: Yeh [2000]), indicating
the complementarity of the two methods, especially on Twitter data. The best F-score
is achieved when combining dictionary lookup, word similarity and context support
(DWC(), in which lexical variants are first looked up in the slang dictionary, and only if
no match is found do we apply our normalisation method.

As is common in research on text normalisation [Gouws et al. 2011; Liu et al. 2012],
throughout this section we have assumed perfect detection of lexical variants. This
is, of course, not practical for real-world applications, and in the following section we
consider the task of identifying lexical variants.

5. TOKEN-BASED LEXICAL VARIANT DETECTION

A real-world end-to-end normalisation solution must be able to identify which tokens
are lexical variants and require normalisation. In this section, we explore a context
fitness-based approach for lexical variant detection. The task is to determine whether
a given OOV word in context is a lexical variant or not, relative to its confusion set. To
the best of our knowledge, we are the first to target the task of lexical variant detection
in the context of short text messages, although related work exists for text with lower
relative occurrences of OOV words [Izumi et al. 2003; Sun et al. 2007]. Due to the

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 Han, Cook and Baldwin

noisiness of the data, it is impractical to use full-blown syntactic or semantic features.
The most direct source of evidence is IV words around an OOV word. Inspired by work
on labelled sequential pattern extraction [Sun et al. 2007], we exploit dependency-
based features generated in Section 4.2.1.

To judge context fitness, we first train a linear kernel SVM classifier [Fan et al.
2008] on clean Twitter data, i.e. the subset of Twitter messages without OOV words
(discussed in Section 4.2.1). Each target word is represented by a vector with di-
mensions corresponding to the IV words within a context window of three words
to either side of the target, together with their relative positions in the form of
(wordl,word2,position) tuples, and with the feature value for a particular dimension
set to the score for the corresponding tuple in the dependency bank. These vectors form
the positive training exemplars. Negative exemplars are automatically constructed by
replacing target words with highly-ranked candidates from their confusion set. For
example, we extract a positive instance for the target word book with a dependency
feature corresponding to the the tuple (book,hotel,—2). A highly-ranked confusion
of book is hook. We therefore form a negative instance for hook with a feature for the
tuple (hook,hotel,—2). In training, it is possible for the exact same feature vector
to occur as both positive and negative exemplars. To prevent the positive exemplars
from becoming contaminated through the automatic negative-instance generation, we
remove all negative instances in such cases. The (word1,word2,position) features are
sparse and sometimes lead to conservative results in lexical variant detection. That is,
without valid features, the SVM classifier tends to label uncertain cases as correct (i.e.
not requiring normalisation) rather than as lexical variants. This is arguably the right
approach to normalisation, in choosing to under- rather than over-normalise in cases
of uncertainty. This artificially-generated data is not perfect; however, this approach is
appealing because the classifier does not require any manually-annotated data, as all
training exemplars are constructed automatically.

To predict whether a given OOV word is a lexical variant, we form a feature vector
as above for each of its confusion candidates. If the number of the OOV’s candidates
predicted to be positive by the model is greater than a threshold ¢,, we consider the
OOV to be a lexical variant; otherwise, the OOV is not deemed to be a lexical variant.
We experiment with varying settings of t; € {1,2,...,10}. Note that in an end-to-end
normalisation system, for an OOV predicted to be a lexical variant, we would pass all
its confusion candidates (not just those classified positively) to the candidate selection
step; however, the focus of this section is only on the lexical variant detection task.

As the context for a target word often contains OOV words which don’t occur in the
dependency bank, we expand the dependency features to include context tokens up
to a phonemic edit distance of 1 from context tokens in the dependency bank. In this
way, dependency-based features tolerate the noisy context word, e.g. given a lexical
variant seee, its confusion candidate “see” can form (see, film, +2) in film to seeee,
but not (see, flm, +2). If we tolerate the context word variations assuming flm is
“film”, (see, flm, +2) would be also counted as (see, film, +2).

However, expanded dependency features may introduce noise, and we therefore in-
troduce expanded dependency weights w,; € {0.0,0.5,1.0} to ameliorate the effects of
noise: a weight of w; = 0.0 means no expansion, while 1.0 means expanded dependen-
cies are indistinguishable from non-expanded (strict match) dependencies.

We test the impact of the wy and ¢4 values on lexical variant detection effectiveness
for Twitter messages, based on dependencies from either the NYT, or the Spinn3r blog
corpus (Blog: Burton et al. [2009]), a large corpus of blogs which we also processed and
parsed like Twitter data. The results for precision, recall and F-score are presented in
Figure 2.
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Fig. 2. Lexical variant detection precision, recall and F-score

Some conclusions can be drawn from the graphs. First, higher detection threshold
values (t4) give better precision but lower recall. Generally, as t; is raised from 1 to
10, the precision improves slightly but recall drops dramatically, with the net effect
that the F-score decreases monotonically. Thus, we use a smaller threshold, i.e. t; = 1.
Second, there are differences between the two corpora, with dependencies from the
Blog corpus producing slightly lower precision but higher recall, compared with the
NYT corpus. The lower precision for the Blog corpus appears to be due to the text not
being as clean as NYT, introducing parser errors. Nevertheless, the difference between
the two corpora with the best F-score is slight (when t; = 1 and wy; = 0.5 on Blog
corpus). The lexical variant proportion among all OOV words in the Twitter dataset is
55%. Overall, the best F-score is 71.2%, with a precision of 61.1% and recall of 85.3%.
Clearly there is significant room for improvements in these results. One quick solution
is to find as many named entities as possible to filter out the non-lexical variant OOV
words. Owning to the extensive editing, sheer volume of data and up-to-date content,
we choose Wikipedia article titles as a source of non-lexical variants which contains
many named entities. However, the results in preliminary experiments with this data
source do not lead to any improvement. By analysing the results, we found that terms
from Wikipedia article titles are inappropriate for our task because they include many
lexical variants such as u and Aw which cause a decrease in recall.

We further consider the performance of a lexical variant detection method based
on the Internet slang dictionary. In particular, if an OOV type has an entry in this
dictionary, we consider all token instances of that type to be lexical variants; if a type
is not in this dictionary, instances of that type are considered to be non-lexical variant
OOVs. This very simple method achieves precision, recall, and F-score of 95.2%, 45.3%,
and 61.4%, respectively. Although the performance of this dictionary-based method is
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substantially below that of our best-performing method, we are encouraged by the very
high precision of this method, particularly because of the previously-noted importance
of not over-normalising.

The challenges of lexical variant detection, along with the high precision of
dictionary-based methods at both lexical normalisation and lexical variant detection,
lead us to consider an alternative dictionary-based approach to normalisation.

6. DICTIONARY-BASED TYPE NORMALISATION
6.1. Motivation and Feasibility Analysis

As discussed in the Section 4.5, dictionary lookup approaches to normali-
sation have been shown to have high precision but low recall. Frequent
(lexical variant, standard form) pairs such as (u,you) are typically included in the dic-
tionaries used by such methods, while less-frequent items such as (g0tta,gotta) are
generally omitted. Because of the degree of lexical creativity and large number of non-
standard forms observed on Twitter, a wide-coverage normalisation dictionary would
be expensive to construct manually. Based on the assumption that lexical variants
occur in similar contexts to their standard forms, however, it should be possible to au-
tomatically construct a normalisation dictionary with wider coverage than is currently
available.

Dictionary lookup is a type-based approach to normalisation, i.e. every token in-
stance of a given type will always be normalised in the same way. However, lexical
variants can be ambiguous, e.g. y corresponds to “you” in yeah, y r right! LOL but
“why” in AM CONFUSED!!! y you did that?. Nevertheless, the relative occurrence of
ambiguous lexical variants is small [Liu et al. 2011], and it has been observed that
while shorter variants such as y are often ambiguous, longer variants tend to be un-
ambiguous. For example bthday and 4eva are unlikely to have standard forms other
than “birthday” and “forever”, respectively. Therefore, the normalisation lexicons we
produce will only contain entries for OOVs with character length greater than a spec-
ified threshold, which are likely to have an unambiguous standard form.

Recently, Gouws et al. [2011] produced a small normalisation lexicon based on dis-
tributional similarity and string similarity [Lodhi et al. 2002]. Our method adopts a
similar strategy using distributional/string similarity, but instead of constructing a
small lexicon for preprocessing, we build a much wider-coverage normalisation dictio-
nary and opt for a fully lexicon-based end-to-end normalisation approach. In contrast
with the normalisation dictionaries which focus on very frequent lexical variants, we
focus on moderate-frequency lexical variants of a minimum character length, which
tend to have unambiguous standard forms; our intention is to produce normalisation
lexicons that are complementary to those currently available. Furthermore, we investi-
gate the impact of a variety of contextual and string similarity measures on the quality
of the resulting lexicons. In summary, our dictionary-based normalisation approach is
a lightweight end-to-end method which performs both lexical variant detection and
normalisation, and thus is suitable for practical online pre-processing, despite its sim-
plicity.

6.2. Word Type Normalisation
Our method for constructing a normalisation dictionary is as follows:

Input:. Tokenised English tweets

1.. Extract (OOV,1V) pairs based on distributional similarity.

2.. Re-rank the extracted pairs by string similarity.

Output:. Alist of (OOV,IV) pairs ordered by string similarity; select the top-n pairs
for inclusion in the normalisation lexicon.
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In Step 1, we leverage large volumes of Twitter data to identify the most
distributionally-similar IV type for each OOV type. The result of this process is a set of
(OOV,1V) pairs, ranked by distributional similarity. The extracted pairs will include
(lexical variant, standard form) pairs, such as (tmrw, tomorrow), but will also contain
false positives such as (Tusday,Sunday) — Tusday is a lexical variant, but its stan-
dard form is not “Sunday” — and (Youtube,web) — Youtube is an OOV named entity,
not a lexical variant. Nevertheless, lexical variants are typically formed from their
standard forms through regular processes [Thurlow 2003; Cook and Stevenson 2009;
Xue et al. 2011] — e.g. the omission of characters — and from this perspective, Sun-
day and web are not plausible standard forms for Tusday and Youtube, respectively. In
Step 2, we therefore capture this intuition in re-ranking the extracted pairs by string
similarity. The top-n items in this re-ranked list then form the normalisation lexicon,
which is based only on development data.

Although computationally-expensive to build, this dictionary can be created offline.
Once built, it then offers a very fast approach to normalisation.

We can only reliably compute distributional similarity for types that are moderately
frequent in a corpus. Nevertheless, many lexical variants are sufficiently frequent to
be able to compute distributional similarity, and can potentially make their way into
our normalisation lexicon. This approach is not suitable for normalising low-frequency
lexical variants, nor is it suitable for shorter lexical variant types which — as discussed
in Section 6 — are more likely to have an ambiguous standard form. Nevertheless,
previously-proposed normalisation methods that can handle such phenomena also rely
in part on a normalisation lexicon. The normalisation lexicons we create can therefore
be easily integrated with previous approaches to form hybrid normalisation systems.

6.3. Contextually Similar Pair Generation

Our objective is to extract contextually-similar (OOV,1V) pairs from a large-scale col-
lection of microblog data. Fundamentally, the surrounding words define the primary
context, but there are different ways of representing context and different similar-
ity measures we can use, which may influence the quality of generated normalisation
pairs.

Intuitively, distributional similarity measures the context proximity of two words
in a corpus, as follows: (1) represent a word’s context by its surrounding words in a
(large) feature vector. Each entry in the vector represents a particular word, usually in
the form of a word frequency. (2) calculate the similarity between two context vectors
based on some distance/similarity measure. For instance, imrw and tomorrow in the
following tweets share a number of context words in the vector, like see, you and school.
This suggests they are distributionally similar.

— I don’t wanna go to school imrw

— okay off to work now . paipai . see you guys tmrw (:
— No school tomorrow or Tuesday woot!!!

—ah i can’t wait to see you tomorrow

In representing the context, we experimentally explore the following factors: (1) con-
text window size (from 1 to 3 tokens on both sides); (2) n-gram order of the context
tokens (unigram, bigram, trigram); (3) whether context words are indexed for relative
position or not; and (4) whether we use all context tokens, or only IV words. Because
high-accuracy linguistic processing tools for Twitter are still under exploration [Liu
et al. 2011; Gimpel et al. 2011; Ritter et al. 2011; Foster et al. 2011], we do not consider
richer representations of context, for example, incorporating information about part-
of-speech tags or syntax. We also experiment with a number of simple but widely-used
geometric and information theoretic distance/similarity measures. In particular, we
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use Kullback—Leibler (KL) divergence [Kullback and Leibler 1951], Jensen—Shannon
(JS) divergence [Lin 1991], Euclidean distance and Cosine distance.

We use a corpus of 10 million English tweets to do parameter tuning over, and a
larger corpus of tweets in the final candidate ranking. All tweets were collected from
September 2010 to January 2011 via the Twitter API.'2 From the raw data we ex-
tract English tweets using an improved language identification tool [Lui and Baldwin
2011],'® and then apply a simplified Twitter tokeniser (adapted from O’Connor et al.
[2010]). We use the Aspell dictionary (v6.06)' to determine whether a word is IV, and
only include in our normalisation dictionary OOV tokens with at least 64 occurrences
in the corpus and character length > 4, both of which were determined through em-
pirical observation. For each OOV word type in the corpus, we select the most similar
IV type to form (OOV,1V) pairs. To further narrow the search space, we only consider
IV words which are morphophonemically similar to the OOV type, based on parameter
tuning from Section 4.2.1 over the top-30% of most frequent IV words in the confusion
set.

In order to evaluate the generated pairs, we randomly selected 1000 OOV words
from the 10 million tweet corpus. We set up an annotation task on Amazon Mechanical
Turk,!® presenting five independent annotators with each word type (with no context)
and asking for corrections where appropriate. For instance, given tmrw, the annota-
tors would likely identify it as a non-standard variant of “tomorrow”. For correct OOV
words like Wikileaks, on the other hand, we would expect them to leave the word un-
changed. If 3 or more of the 5 annotators make the same suggestion (in the form of
either a canonical spelling or leaving the word unchanged), we include this in our gold
standard for evaluation. In total, this resulted in 351 lexical variants and 282 cor-
rect OOV words, accounting for 63.3% of the 1000 OOV words. These 633 OOV words
were used as (OOV,IV) pairs for parameter tuning. The remainder of the 1000 OOV
words were ignored on the grounds that there was not sufficient consensus amongst
the annotators.'6

Contextually-similar pair generation aims to include as many correct normalisation
pairs as possible. We evaluate the quality of the normalisation pairs using “Cumulative
Gain” (CQG):

N
CG = Z rel;
i=1

Suppose there are N’ correct generated pairs (oov;,iv;), each of which is weighted
by rel;, the frequency of oov; to indicate its relative importance; for example,
(thinkin,thinking) has a higher weight than (g0tta, gotta) because thinkin is more fre-
quent than gOtta in our corpus. In this evaluation we don’t consider the position of
normalisation pairs, and nor do we penalise incorrect pairs. Instead, we push distin-
guishing between correct and incorrect pairs into the downstream re-ranking step in
which we incorporate string similarity information.

Phttps://dev.twitter.com/docs/streaming-api/methods

13 A much-updated version of the language identification method used to construct the lexical normalisation
dataset, trained over a larger sample of datasets, with feature selection based on the notion of domain
generalisation.

Mhttp://aspell.net/

ohttps://www.mturk. com/mturk/welcome

16Note that the objective of this annotation task is to identify lexical variants that have agreed-upon stan-
dard forms irrespective of context, as a special case of the more general task of lexical normalisation (where
context may or may not play a significant role in the determination of the normalisation).
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Table 1V. The five best parameter combinations in the exhaustive search of parameter combinations

Rank Window size n-gram Positional index? Lex. choice  Sim/distance measure log(CG)

1 +3 2 Yes All KL divergence 19.571
2 +3 2 No All KL divergence 19.562
3 +2 2 Yes All KL divergence 19.562
4 +3 2 Yes IVs KL divergence 19.561
5 +2 2 Yes IVs JS divergence 19.554

Table V. Parameter sensitivity analysis measured as log(CG) for correctly-generated pairs. We tune
one parameter at a time, using the default (underlined) setting for other parameters; the non-exhaustive
best-performing setting in each case is indicated in bold.

Window size  n-gram Positional index? Lexical choice  Similarity/distance measure

+1 19.325 1 19.328 Yes 19.328 IVs 19.335 KL divergence 19.328

+2 19.327 2 19.571 No 19.263 All 19.328 Euclidean 19.227

+3 19.328 3 19.324 JS divergence 19.311
Cosine 19.170

Given the development data and CG, we run an exhaustive search of parameter
combinations over our development corpus. The five best parameter combinations are
shown in Table IV. We notice the CG is almost identical for the top combinations. As a
context window size of 3 incurs a heavy processing and memory overhead over a size
of 2, we use the 3rd-best parameter combination for subsequent experiments, namely:
context window of +£2 tokens, token bigrams, positional index, and KL divergence as
our distance measure.

To better understand the sensitivity of the method to each parameter, we perform
a post-hoc parameter analysis relative to a default setting (as underlined in Table V),
altering one parameter at a time. The results in Table V show that bigrams outperform
other n-gram orders by a large margin (note that the evaluation is based on a log scale),
and information-theoretic measures are superior to the geometric measures. Further-
more, it also indicates using the positional indexing better captures context. However,
there is little to distinguish context modelling with just IV words or all tokens. Simi-
larly, the context window size has relatively little impact on the overall performance,
supporting our earlier observation from Table IV.

6.4. Pair Re-ranking by String Similarity

Once the contextually-similar (OOV,IV) pairs are generated using the selected pa-
rameters in Section 6.3, we further re-rank this set of pairs in an attempt to boost
morphophonemically-similar pairs like (bananaz, bananas), and penalise noisy pairs
like (paninis, beans).

Instead of using the small 10 million tweet corpus, from this step onwards, we use a
larger corpus of 80 million English tweets (collected over the same period as the devel-
opment corpus) to develop a larger-scale normalisation dictionary. This is because once
pairs are generated, re-ranking based on string comparison is much faster. We only in-
clude in the dictionary OOV words with a token frequency > 15 to include more OOV
types than in Section 6.3, and again apply a minimum length cutoff of 4 characters.

To measure how well our re-ranking method promotes correct pairs and demotes
incorrect pairs (including both OOV words that should not be normalised, e.g.
(Youtube, web), and incorrect normalisations for lexical variants, e.g. (bcuz,cause)),
we modify our evaluation metric from Section 6.3 to evaluate the ranking at different
points, using Discounted Cumulative Gain (DCG@N': Jarvelin and Kekalainen [2002]):

rel;
log, (1)

N
DCG@N =rel, + »
=2
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where rel; again represents the frequency of the OOV, but it can be a gain (a positive
number) or loss (a negative number), depending on whether the ith pair is correct
or incorrect. Because we also expect correct pairs to be ranked higher than incorrect
pairs, DCG@N takes both factors into account.

Given the generated pairs and the evaluation metric, we first consider three base-
lines: no re-ranking (i.e. the final ranking is that of the contextual similarity scores),
and re-rankings of the pairs based on the frequencies of the OOVs in the Twitter cor-
pus, and the IV unigram frequencies in the Google Web 1T corpus [Brants and Franz
2006] to get less-noisy frequency estimates. We also compared a variety of re-rankings
based on a number of string similarity measures that have been previously considered
in normalisation work (reviewed in Section 2). We experiment with a series of string
similarity measures: standard edit distance [Levenshtein 1966], which is the minimum
number of character-level insertions/deletions/substitutions to transform one string
to another (from a lexical variant to its normalisation in this paper); edit distance
over double metaphone codes (phonetic edit distance: [Philips 2000]); longest common
subsequence ratio over the consonant edit distance of the paired words (hereafter, de-
noted as consonant edit distance: [Contractor et al. 2010]); a string subsequence kernel
[Lodhi et al. 2002], which measures common character subsequences of length n be-
tween (OOV, 1V) pairs. Because it is computationally expensive to calculate similarity
for larger n, we choose n=2, following Gouws et al. [2011].

In Figure 3, we present the DCG@N results for each of our ranking methods at differ-
ent rank cut-offs. Ranking by OOV frequency is motivated by the assumption that lex-
ical variants are frequently used by social media users. This is confirmed by our find-
ings that lexical pairs like (goin,going) and (nite, night) are at the top of the ranking.
However, many proper nouns and named entities are also used frequently and ranked
at the top, mixed with lexical variants like (Facebook, speech) and (Youtube,web). In
ranking by IV word frequency, we assume the lexical variants are usually derived from
frequently-used IV equivalents, e.g. (abou,about). However, many less-frequent lexi-
cal variant types have high-frequency (IV) normalisations. For instance, the highest-
frequency IV word the has more than 40 OOV lexical variants, such as tthe and thhe.
These less-frequent types occupy the top positions, reducing the cumulative gain. Com-
pared with these two baselines, ranking by default contextual similarity scores deliv-
ers promising results. It successfully ranks many more intuitive normalisation pairs
at the top, such as (2day,today) and (wknd,weekend), but also ranks some incorrect
pairs highly, such as (needa, gotta).

The string similarity-based methods perform better than our baselines in general.
Through manual analysis, we found that standard edit distance ranking is fairly
accurate for lexical variants with low edit distance to their standard forms, e.g.
(thinkin,thinking). Because this method is based solely on the number of character
edits, it fails to identify heavily-altered variants like (¢mrw, tomorrow). Consonant edit
distance favours pairs with longer common subsequences, and therefore places many
longer words at the top of the ranking. Edit distance over double metaphone codes
(phonetic edit distance) performs particularly well for lexical variants that include
character repetitions — commonly used for emphasis on Twitter — because such repe-
titions do not typically alter the phonetic codes. Compared with the other methods, the
string subsequence kernel delivers encouraging results. As N (the lexicon size cut-off)
increases, the performance drops more slowly than the other methods. Although this
method fails to rank heavily-altered variants such as (4get, forget) highly, it typically
works well for longer words. Given that we focus on longer OOVs (specifically those
longer than 4 characters), this ultimately isn’t a great handicap.
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Fig. 3. Re-ranking based on different string similarity methods.

7. EVALUATION OF DICTIONARY-BASED NORMALISATION

Given the re-ranked pairs from Section 6.4, here we apply them to a token-level nor-
malisation task, once again using the normalisation dataset from Section 4.3.

7.1. Metrics

We use the same standard evaluation metrics of precision (P), recall (R) and F-score (F)
as detailed in Section 4.3. In addition, we also consider the false alarm rate (FA) and
word error rate (WER), as shown below. FA measures the negative effects of applying
normalisation: a good approach to normalisation should not (incorrectly) normalise
tokens that are already in their standard form and do not require normalisation.!”
WER, like F-score, shows the overall benefits of normalisation, but unlike F-score,
measures how many token-level edits are required for the output to be the same as the
ground truth data. In general, dictionaries with a high F-score/low WER and low FA
are preferable.

__# incorrectly normalised tokens
o # normalised tokens
# token edits needed after normalisation
# all tokens

FA

WER=

L7FA + P < 1 because some lexical variants might be incorrectly normalised.
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Table VI. Normalisation results using our derived dictionaries (contextual similarity (C-dict); double metaphone ren-
dering (DM-dict); string subsequence kernel scores (S-dict)), the dictionary of Gouws et al. [2011] (GHM-dict), the
Internet slang dictionary (HB-dict) in Section 4.5, and combinations of these dictionaries. Furthermore, we combine
the dictionaries with the normalisation method of Gouws et al. [2011] (GHM-norm) and the combined unsupervised
approach in (HB-norm) Section 4.2.2. In addition, we also compare the context sensitive normalisation on cleaned text
after the lexicon lookup normalisation attached with *.

Method Precision Recall F-Score False Alarm Word Error Rate
C-dict 0.474 0.218 0.299 0.298 0.103
DM-dict 0.727 0.106 0.185 0.145 0.102
S-dict 0.700 0.179 0.285 0.162 0.097
HB-dict 0.915 0.435 0.590 0.048 0.066
GHM-dict 0.982 0.319 0.482 0.000 0.076
HB-dict+S-dict 0.840 0.601 0.701 0.090 0.052
GHM-dict+S-dict 0.863 0.498 0.632 0.072 0.061
HB-dict+GHM-dict 0.920 0.465 0.618 0.045 0.063
HB-dict+GHM-dict+S-dict 0.847 0.630 0.723 0.086 0.049
GHM-dict+GHM-norm 0.338 0.578 0.427 0.458 0.135
HB-dict+GHM-dict+S-dict+GHM-norm 0.406 0.715 0.518 0.468 0.124
HB-dict+HB-norm 0.515 0.771 0.618 0.332 0.081
HB-dict+GHM-dict+S-dict+HB-norm 0.527 0.789 0.632 0.332 0.079
HB-dict+GHM-dict+S-dict+HB-norm* 0.528 0.791 0.633 0.332 0.079

7.2. Results and Analysis

We select the three best re-ranking methods, and best cut-off NV for each method, based
on the highest DCG@N value for a given method over the development data, as pre-
sented in Figure 3. Namely, they are string subsequence kernel (S-dict, N=40,000),
double metaphone edit distance (DM-dict, N=10,000) and default contextual similar-
ity without re-ranking (C-dict, N=10,000).18

We evaluate each of the learned dictionaries in Table VI. We also compare each dic-
tionary with the performance of the manually-constructed Internet slang dictionary
(HB-dict) used in Section 4.5, the small automatically-derived dictionary of Gouws
et al. [2011] (GHM-dict), and combinations of the different dictionaries. In addition, the
contribution of these dictionaries in hybrid normalisation approaches is presented, in
which we first normalise OOVs using a given dictionary (combined or otherwise), and
then apply the normalisation method of Gouws et al. [2011] based on consonant edit
distance (GHM-norm), or the approach of Han and Baldwin [2011] based on the sum-
mation of many unsupervised approaches (HB-norm), to the remaining OOVs. Results
are shown in Table VI, and discussed below.

7.2.1. Individual Dictionaries. Overall, the individual dictionaries derived by the re-
ranking methods (DM-dict, S-dict) perform better than those based on contextual sim-
ilarity (C-dict) in terms of precision and false alarm rate, indicating the importance of
re-ranking. Even though C-dict delivers higher recall — indicating that many lexical
variants are correctly normalised — this is offset by its high false alarm rate, which is
particularly undesirable in normalisation. Because S-dict has better performance than
DM-dict in terms of both F-score and WER, and a much lower false alarm rate than
C-dict, subsequent results are presented using S-dict only.

Both HB-dict and GHM-dict achieve better than 90% precision with moderate recall.
Compared to these methods, S-dict is not competitive in terms of either precision or
recall. This result seems rather discouraging. However, considering that S-dict is an
automatically-constructed dictionary targeting lexical variants of varying frequency, it
is not surprising that the precision is worse than that of HB-dict — which is manually-

18We also experimented with combining ranks using Mean Reciprocal Rank. However, the combined rank
didn’t improve performance on the development data. We plan to explore other ranking aggregation methods
in future work.
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constructed — and GHM-dict — which includes entries only for more-frequent OOVs
for which distributional similarity is more accurate. Additionally, the recall of S-dict is
hampered by the restriction on lexical variant token length of 4 characters.

7.2.2. Combined Dictionaries. Next we look to combining HB-dict, GHM-dict and S-dict.
In combining the dictionaries, a given OOV word can be listed with different standard
forms in different dictionaries. In such cases we use the following preferences for dic-
tionaries — motivated by our confidence in the normalisation pairs of the dictionaries
— to resolve conflicts: HB-dict > GHM-dict > S-dict.

When we combine dictionaries in the second section of Table VI, we find that they
contain complementary information: in each case the recall and F-score are higher
for the combined dictionary than any of the individual dictionaries. The combination
of HB-dict+GHM-dict produces only a small improvement in terms of F-score over
HB-dict (the better-performing dictionary) suggesting that, as claimed, HB-dict and
GHM-dict share many frequent normalisation pairs. HB-dict+S-dict and GHM-dict+S-
dict, on the other hand, improve substantially over HB-dict and GHM-dict, respec-
tively, indicating that S-dict contains markedly different entries to both HB-dict and
GHM-dict. The best F-score and WER are obtained using the combination of all three
dictionaries, HB-dict+GHM-dict+S-dict. Furthermore, the difference between the re-
sults using HB-dict+GHM-dict+S-dict and HB-dict+GHM-dict is statistically signifi-
cant (p < 0.01), based on the computationally-intensive Monte Carlo method of Yeh
[2000], demonstrating the contribution of S-dict.

7.2.3. Hybrid Approaches. So far, we have discussed using approaches using context
sensitive normalisation (Section 4.2) and dictionary-based type normalisation (Sec-
tion 6). The methods of Gouws et al. [2011] (i.e. GHM-dict+GHM-norm) and our pro-
posed token-based hybrid approach (i.e. HB-dict+HB-norm) have lower precision and
higher false alarm rates than the dictionary-based approaches; this is largely caused
by lexical variant detection errors. When doing such comparisons, we report results
that do not assume perfect detection of lexical variants, unlike the original published
results in each case. Using all dictionaries in combination with these methods — HB-
dict+GHM-dict+S-dict+GHM-norm and HB-dict+GHM-dict+S-dict+HB-norm — gives
some improvements, but the false alarm rates remain high. A larger dictionary helps
in improving the F-score and reducing the WER.

7.2.4. Impact of Context. As mentioned in Section 4.5, the disappointing performance
of context features is partially attributable to noisy contexts, as neighbouring lexi-
cal variants mutually reduce the usable context of each other. To counter this ef-
fect, we apply context-sensitive token-based normalisation on the basis of the already
partially normalised text (through our best dictionary) and compare its performance
with token-based normalisation using the original unnormalised text, as shown in the
last two rows of Table VI. This quantifies the relative impact of dictionary-based pre-
normalisation on context-sensitive normalisation.

The results indicate that partial pre-normalisation has only a very slight effect.
Analysis of the two methods led to the finding that only 45 tokens were altered by the
context-sensitive normalisation. That is, most lexical variants are already normalised
by the lexicon in pre-normalisation, and it is not surprising that the context-sensitive
lexical normalisation step had little impact.

We further analysed the 45 instances which the context-sensitive normalisation
modified, and found that cleaned text does indeed help in context-sensitive normalisa-
tion, as shown in Table VII. When presented with the noisy context sorryy, the lexical
variant im is incorrectly normalised to Aim, however, when the context is cleaned —
i.e. sorryy is restored to sorry — im is correctly normalised to (“I'm”), as both the lan-
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Table VII. Example where cleaned text helps context sensitive normalisation

Data label messages

Noisy input message @username damn that sucks im sorryy ) :
Normalisation on original message @username damn that sucks him sorry ) :
Normalisation on cleaned message @username damn that sucks i'm sorry ) :

Correct normalised message (oracle) @username damn that sucks i'm sorry ) :

Table VIII. Error types in the combined dictionary (HB-
dict+GHM-dict+S-dict)

Error type ooV Standard form

Dict. Gold
(a) plurals playe players player
(b) negation unlike like dislike
(c) possessives anyones  anyone anyone’s
(d) correct OOVs iphone phone iphone
(e) test data errors durin during durin
(f) ambiguity siging signing singing

Table IX. S-dict normalisation results broken down according to OOV token length. Recall is pre-
sented both over the subset of instances of length > N in the data (“Recall (> N)”), and over the
entirety of the dataset (“Recall (all)”); “#Variants” is the number of token instances of the indicated
length in the test dataset.

Length cut-off (V)  #Variants Precision Recall (> N) Recall (all) False Alarm

>4 556 0.700 0.381 0.179 0.162
>5 382 0.814 0.471 0.152 0.122
>6 254 0.804 0.484 0.104 0.131
>7 138 0.793 0.471 0.055 0.122

guage model-based and dependency-based context feature strongly support the usage
of “’‘m sorry”. Other encouraging cases where pre-normalisation with the dictionary
aids context-sensitive normalisation are shown in Table VII. In the bulk of cases, how-
ever, the updated context led to a different, but still incorrect, normalisation candidate,
as compared to the simple case of no pre-normalisation. Clearly, therefore, more work
can be done at the interface between the two methods.

Despite the limitations of a pure dictionary-based approach to normalisation — dis-
cussed in Section 6.2 — the current best practical approach to normalisation is to use
a lexicon, combining hand-built and automatically-learned normalisation dictionaries.

7.3. Discussion and Error Analysis

We first manually analyse the errors in the combined dictionary (HB-dict+GHM-
dict+S-dict) and give examples of each error type in Table VIII. The most frequent
word errors are caused by slight morphological variations, including plural forms (a),
negations (b), possessive cases (c), and OOVs that are correct and do not require nor-
malisation (d). In addition, we also notice some missing annotations where lexical vari-
ants are skipped by human annotations but captured by our method (e). Ambiguity (f)
definitely exists in longer OOVs, however, these cases do not appear to have a strong
negative impact on the normalisation performance. An example of a remaining miscel-
laneous error is bday “birthday”, which is mis-normalised as day.

To further study the influence of OOV word length relative to the normalisation
performance, we conduct a fine-grained analysis of the performance of the derived
dictionary (S-dict) in Table IX, broken down across different OOV word lengths. The
results generally support our hypothesis that our method works better for longer OOV
words. The derived dictionary is much more reliable for longer tokens (length 5, 6, and
7 characters) in terms of precision and false alarm. Although the recall is relatively
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modest, in the future we intend to improve recall by mining more normalisation pairs
from larger collections of microblog data.

8. EXTRINSIC EVALUATION OF LEXICAL NORMALISATION

Having proposed a number of approaches to lexical normalisation, and evaluating
those methods directly, we now evaluate the impact of normalisation in an applied
setting. When NLP tools trained on more conventional text are applied to social me-
dia, their performance is hampered in part due to the presence of lexical variants (as
discussed in Section 1). We therefore hypothesise that the performance of such tools
might improve if lexical normalisation is applied after tokenisation, and before subse-
quent processing.

In this section we test the above hypothesis on a Twitter part-of-speech (POS) tag-
ging task. We choose POS tagging for the following reasons: (1) the impact of lexical
normalisation is readily-observed, as it is easy to compare the POS tags for the origi-
nal and normalised texts; (2) off-the-shelf part-of-speech taggers are available for both
more-conventional text [Toutanova et al. 2003] and social media [Gimpel et al. 2011];
(3) a human-annotated Twitter POS tagging dataset is publicly available [Gimpel et al.
2011].

The Part-of-speech tagging dataset of Gimpel et al. [2011] consists of 1827 tokenised
and annotated messages from Twitter.'? 500 messages — referred to as the test set —
are held out for test purposes, with the rest of the data being used for training and
development, as described in Gimpel et al. [2011]. For each message in the test set, we
apply the best-performing dictionary-based normalisation method from Section 7.2,
namely HB-dict+GHM-dict+S-dict. However, when substituting words, we also con-
sider information about the case of the original tokens, as this information is known
to be important for Twitter POS tagging [Gimpel et al. 2011]. Specifically, the case of
the first and last characters of the normalised word form are set to the case of the
first and last characters of the original token, respectively. All the other characters of
the normalised form are set to the case of the middle character of the original token.
For example, Todei, WKEND and tmrw are normalised as “Today”, “WEEKEND” and
“tomorrow”, respectively.

We compare the performance of the Twitter-specific POS tagger (“POS;yister ) to that
of a standard off-the-shelf tool, the Stanford POS tagger (“POSstanfora”: Toutanova
et al. [2003]). However, these taggers use different tagsets: POS;itter uses a much more
coarse-grained tagset than the Penn Treebank POS tagset that is used by POSs;anford-
We are interested in the performance of a conventional off-the-shelf tool, and therefore
do not re-train POSganfora 0n the POS-annotated tweets. Instead, we manually devised
a lossy mapping from the fine-grained POSs;.,0:q tagset to that of POS;itter. In this
mapping, finer-grained tags unique to POSgs;.nf0:q (e.g. VBP and VBN) are mapped to
coarser-grained POS ;o tags (e.g. V).20

We apply POS,;yitter and POSgiantora to the test set, both with and without first ap-
plying normalisation. We use accuracy to measure performance, excluding tokens in
the gold-standard with a Twitter-specific POS tag from the calculation (as there is no
way of reliably mapping onto them from the Penn POS tagset). Results are shown in
Table X. First, we compare the performance of POSs;.nf0rq On the original tweets to its
performance on the normalised tweets. The accuracy on normalised text is 1.6 percent-
age points higher than that on the original text. In total, 108 more tokens are correctly

nttp://ark-tweet-nlp.googlecode.com/files/twpos-data-v0.2.tar.gz

20The test set provides tokenised tweets, but contains some tokenisation errors, e.g. “Success is tokenised as
a single token, instead of as the pair of tokens “ and Sucess. In the small number of such cases we manually
correct the tokens output from the POS tagger to be consistent with the test set tokenisation.
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Table X. Comparison of accuracy of POS;yitter (@ Twitter POS
tagger) and POSs;anfora (2 general-purpose POS tagger) applied
to the original and normalised tweets in the test set. The total
number of correct tags is also shown.

Tagger Text % accuracy # correct tags
POSstanford original 68.4 4753
POSstanfora  normalised 70.0 4861

POS;witter original 95.2 6819
POS:witter normalised 94.7 6780

tagged when lexical normalisation is used. We observe that most of this improvement
is for nouns and verbs. Although the improvement in performance is small, it is sta-
tistically significant (p < 0.01) using the method of Yeh [2000]. Furthermore, only 275
tokens in the test set are normalised (i.e. the remaining tokens are unchanged through
normalisation). It could be the case that more normalisation would lead to a greater
improvement in POS tagging performance for noisier text containing more lexical vari-
ants.

We further consider the impact of normalisation on POS;;itter, the Twitter-specific
tagger. In this case the performance on pre-normalised tweets drops slightly over that
for the original messages, indicating that normalising the input hurts the performance
of POS;itter- This is somewhat expected because some features used by POS;yitter are
derived from noisy tokens: when the input is normalised, some of these features are
not present, e.g. features capturing cooccurrence with lexical variants.

In summary, these preliminary comparisons show the influence of normalisation on
the task of POS tagging for Twitter. In terms of cost, using a conventional off-the-shelf
tool (e.g. POSs;anfora) with normalisation is the cheapest option, and would obviate the
need for the development of a Twitter-specific tool such as POS;itter. Not surprisingly,
building a tool specific to the target domain yields the best performance. However, this
comes at the substantial overhead of developing a specific tagset, manually annotating
training data, and developing the tagger itself.

9. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the task of normalising lexical variants to their canon-
ical forms for short text messages in social media, e.g. Twitter and SMS data. We first
analyse the in-domain OOV word types and distributions, and propose a detection-
and-normalisation approach using both contextual and string similarity information.
The proposed method beat other benchmark methods in token-based normalisation,
however, most of these conventional methods suffer from the poor performance of lexi-
cal variant detection, which makes them less practical in real normalisation. Encour-
aged by the dictionary-based normalisation performance, we moved on to use contex-
tual/string similarity information to build a type-based normalisation lexicon with par-
ticular focus on context-insensitive lexical variants. Although the proposed type-based
method has the limitation that it cannot capture context or disambiguate different
usages of the same token, in empirical evaluation, we showed it to achieve state-
of-the-art accuracy, with broader coverage than existing dictionaries and reasonable
precision. Furthermore, this dictionary-lookup approach combines the detection and
normalisation of lexical variants into a simple, lightweight solution which is suitable
for processing high-volume microblog feeds.

Given the encouraging results of the dictionary-based method, we primarily intend
to improve the quantity and quality of the mined lexicon in future work, e.g. (1) enrich-
ing our dictionary entries by leveraging the constantly-growing volume of microblog
data; and (2) exploring alternative ways to combine distributional and string similar-
ity for better quality lexical candidate generation. Ultimately, context-sensitive nor-
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malisation is much more powerful than the lexicon-based approach, and we also plan
to explore context-sensitive methods for token-based normalisation given different po-
tential normalisations. We only consider one-to-one token level normalisation in this
paper, and plan to further expand the scope of the task to include many-to-many token
normalisation.

Acknowledgements

We would like to thank anonymous reviewers for their insightful comments and valuable sug-
gestions.

NICTA is funded by the Australian government as represented by Department of Broadband,
Communication and Digital Economy, and the Australian Research Council through the ICT
centre of Excellence programme.

REFERENCES

AW, A., ZHANG, M., XIAO, J., AND SU, J. 2006. A phrase-based statistical model for SMS text normalization.
In Proceedings of the COLING /ACL 2006 Main Conference Poster Sessions. Sydney, Australia, 33—40.

BALDWIN, T. AND Lul, M. 2010. Language identification: The long and the short of the matter. In HLT
’10: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics. Los Angeles, USA, 229-237.

BENSON, E., HAGHIGHI, A., AND BARZILAY, R. 2011. Event discovery in social media feeds. In Proceed-
ings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies. Portland, Oregon, USA, 389-398.

BRANTS, T. AND FRANZ, A. 2006. Web 1T 5-gram Version 1.

BRrILL, E. AND MOORE, R. C. 2000. An improved error model for noisy channel spelling correction. In
Proceedings of the 38th Annual Meeting on Association for Computational Linguistics. Hong Kong, 286—
293.

BURTON, K., JAVA, A., AND SOBOROFF, 1. 2009. The ICWSM 2009 Spinn3r Dataset. In Proceedings of the
Third Annual Conference on Weblogs and Social Media. San Jose, USA.

CHOUDHURY, M., SARAF, R., JAIN, V., MUKHERJEE, A., SARKAR, S., AND BASU, A. 2007. Investigation
and modeling of the structure of texting language. International Journal on Document Analysis and
Recognition 10, 157-174.

CONTRACTOR, D., FARUQUIE, T. A., AND SUBRAMANIAM, L. V. 2010. Unsupervised cleansing of noisy
text. In Proceedings of the 23rd International Conference on Computational Linguistics: Posters. Beijing,
China, 189-196.

COOK, P. AND STEVENSON, S. 2009. An unsupervised model for text message normalization. In CALC "09:
Proceedings of the Workshop on Computational Approaches to Linguistic Creativity. Boulder, USA, 71—
78.

DAVID GRAFF, C. C. 2003. English Gigaword. Linguistic Data Consortium, Philadelphia, USA. http://
www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2003TO5.

DE MARNEFFE, M., MACCARTNEY, B., AND MANNING, C. D. 2006. Generating typed dependency parses
from phrase structure parses. In Proceedings of the 5th International Conference on Language Resources
and Evaluation (LREC 2006). Genoa, Italy.

FAN, R.-E., CHANG, K.-W., HSIEH, C.-J., WANG, X.-R., AND LIN, C.-J. 2008. LIBLINEAR: A library for
large linear classification. Journal of Machine Learning Research 9, 1871-1874.

FOSTER, J., CETINOGLU, O., WAGNER, J., ROUX, J. L., HOGAN, S., NIVRE, J., HOGAN, D., AND VAN GEN-
ABITH, J. 2011. #hardtoparse: POS Tagging and Parsing the Twitterverse. In Analyzing Microtext: Pa-
pers from the 2011 AAAI Workshop. AAAI Workshops Series, vol. WS-11-05. San Francisco, CA, USA,
20-25.

GIMPEL, K., SCHNEIDER, N., O’CONNOR, B., DAS, D., MILLS, D., EISENSTEIN, J., HEILMAN, M., YO-
GATAMA, D., FLANIGAN, J., AND SMITH, N. A. 2011. Part-of-speech tagging for Twitter: Annotation,
features, and experiments. In Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies. Portland, Oregon, USA, 42-47.

GONZALEZ-IBANEZ, R., MURESAN, S., AND WACHOLDER, N. 2011. Identifying sarcasm in Twitter: a closer
look. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Hu-
man Language Technologies: short papers - Volume 2. Portland, Oregon, USA, 581-586.

GOUWS, S., Hovy, D., AND METZLER, D. 2011. Unsupervised mining of lexical variants from noisy text. In
Proceedings of the First workshop on Unsupervised Learning in NLP. Edinburgh, Scotland, UK, 82-90.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 Han, Cook and Baldwin

HAN, B. AND BALDWIN, T. 2011. Lexical normalisation of short text messages: Makn sens a #twitter. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies. Portland, Oregon, USA, 368-378.

HAN, B., COOK, P., AND BALDWIN, T. 2012. Automatically constructing a normalisation dictionary for mi-
croblogs. To appear in Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing and Natural Language Learning (EMNLP-CoNLL 2012). Jeju, Korea.

How, Y. AND KAN, M.-Y. 2005. Optimizing predictive text entry for short message service on mobile phones.
In Human Computer Interfaces International (HCII 05). Las Vegas, USA.

IzuwMmi, E., UcHIMOTO, K., SAIGA, T., SUPNITHI, T., AND ISAHARA, H. 2003. Automatic error detection in
the Japanese learners’ English spoken data. In Proceedings of the 41st Annual Meeting on Association
for Computational Linguistics - Volume 2. Sapporo, Japan, 145-148.

JARVELIN, K. AND KEKALAINEN, J. 2002. Cumulated gain-based evaluation of IR techniques. ACM Trans-
actions on Information Systems 20, 4.

JIANG, L., YU, M., ZHOU, M., Liu, X., AND ZHAO, T. 2011. Target-dependent Twitter sentiment classi-
fication. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics.
Portland, Oregon, USA, 151-160.

KAUFMANN, J. AND KALITA, J. 2010. Syntactic normalization of Twitter messages. In International Confer-
ence on Natural Language Processing. Kharagpur, India.

KLEIN, D. AND MANNING, C. D. 2003. Fast exact inference with a factored model for natural language
parsing. In Advances in Neural Information Processing Systems 15 (NIPS 2002). Whistler, Canada, 3—
10.

KOEHN, P., HOANG, H., BIRCH, A., CALLISON-BURCH, C., FEDERICO, M., BERTOLDI, N., COWAN, B.,
SHEN, W., MORAN, C., ZENS, R., DYER, C., BOJAR, O., CONSTANTIN, A., AND HERBST, E. 2007. Moses:
open source toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of the
ACL on Interactive Poster and Demonstration Sessions. Prague, Czech Republic, 177-180.

KULLBACK, S. AND LEIBLER, R. A. 1951. On information and sufficiency. Annals of Mathematical Statis-
tics 22, 49-86.

LAFFERTY, J. D., MCCALLUM, A., AND PEREIRA, F. C. N. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data. In Proceedings of the Eighteenth International
Conference on Machine Learning. San Francisco, CA, USA, 282-289.

LEVENSHTEIN, V. I. 1966. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady 10, 707-710.

L1, M., ZHANG, Y., ZHU, M., AND ZHOU, M. 2006. Exploring distributional similarity based models for query
spelling correction. In Proceedings of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computational Linguistics. Sydney, Australia, 1025—
1032.

LIN, D. 1998. Automatic retrieval and clustering of similar words. In Proceedings of the 17th international
conference on Computational linguistics. Montreal, Quebec, Canada, 768-774.

LIN, J. 1991. Divergence measures based on the shannon entropy. IEEE Transactions on Information The-
ory 37, 1, 145-151.

L1u, F., WENG, F., AND JIANG, X. 2012. A broad-coverage normalization system for social media language.
In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (ACL 2012).
Jeju, Republic of Korea.

Liu, F., WENG, F., WANG, B., AND LIU, Y. 2011. Insertion, deletion, or substitution? normalizing text mes-
sages without pre-categorization nor supervision. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies. Portland, Oregon, USA, 71—
76.

L1y, X., ZHANG, S., WEI, F., AND ZHOU, M. 2011. Recognizing named entities in tweets. In Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technolo-
gies. Portland, Oregon, USA, 359-367.

LoDHI, H., SAUNDERS, C., SHAWE-TAYLOR, J., CRISTIANINI, N., AND WATKINS, C. 2002. Text classifica-
tion using string kernels. J. Mach. Learn. Res. 2, 419-444.

Lui, M. AND BALDWIN, T. 2011. Cross-domain feature selection for language identification. In Proceedings
of 5th International Joint Conference on Natural Language Processing. Chiang Mai, Thailand, 553-561.

O’CONNOR, B., KRIEGER, M., AND AHN, D. 2010. TweetMotif: Exploratory search and topic summarization
for Twitter. In Proceedings of the 4th International Conference on Weblogs and Social Media (ICWSM
2010). Washington, USA, 384-385.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



Lexical Normalisation of Short Text Messages A:27

PAPINENI, K., ROUKOS, S., WARD, T., AND ZHU, W.-J. 2002. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th Annual Meeting on Association for Computational
Linguistics. Philadelphia, USA, 311-318.

PETERSON, J. L. 1980. Computer programs for detecting and correcting spelling errors. Commun. ACM 23,
676-687.

PHILIPS, L. 2000. The double metaphone search algorithm. C/C++ Users Journal 18, 38—43.

RABINER, L. R. 1989. A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE 77, 2, 257-286.

RITTER, A., CHERRY, C., AND DOLAN, B. 2010. Unsupervised modeling of Twitter conversations. In HLT
’10: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics. Los Angeles, USA, 172-180.

RITTER, A., CLARK, S., MAUSAM, AND ETZIONI, O. 2011. Named entity recognition in tweets: An experi-
mental study. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Pro-
cessing. Edinburgh, Scotland, UK, 1524-1534.

SAKAKI, T., OKAZAKI, M., AND MATSUO, Y. 2010. Earthquake shakes Twitter users: real-time event detec-
tion by social sensors. In Proceedings of the 19th international conference on World wide web. Raleigh,
North Carolina, USA, 851-860.

SHANNON, C. E. 1948. A mathematical theory of communication. Bell System Technical Journal 27, 379—
423, 623—-656.

SPROAT, R., BLACK, A. W., CHEN, S., KUMAR, S., OSTENDORF, M., AND RICHARDS, C. 2001. Normalization
of non-standard words. Computer Speech and Language 15, 3, 287 — 333.

STOLCKE, A. 2002. Srilm - an extensible language modeling toolkit. In International Conference on Spoken
Language Processing. Denver, USA, 901-904.

SuN, G., CONG, G., Liu, X., LIN, C.-Y., AND ZHOU, M. 2007. Mining sequential patterns and tree pat-
terns to detect erroneous sentences. In Proceedings of the 45th Annual Meeting of the Association of
Computational Linguistics. Prague, Czech Republic, 81-88.

THURLOW, C. 2003. Generation txt? The sociolinguistics of young people’s text-messaging. Discourse Anal-
ysis Online 1, 1.

TOUTANOVA, K., KLEIN, D., MANNING, C. D., AND SINGER, Y. 2003. Feature-rich part-of-speech tagging
with a cyclic dependency network. In Proceedings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language Technology - Volume 1. NAACL
’03. Association for Computational Linguistics, Edmonton, Canada, 173-180.

TOUTANOVA, K. AND MOORE, R. C. 2002. Pronunciation modeling for improved spelling correction. In Pro-
ceedings of the 40th Annual Meeting on Association for Computational Linguistics. ACL *02. Philadel-
phia, USA, 144-151.

TWITTER. 2011. 200 million tweets per day. Retrived at August 17th, 2011.

WENG, J. AND LEE, B.-S. 2011. Event detection in Twitter. In Proceedings of the Fifth International AAAI
Conference on Weblogs and Social Media. Barcelona, Spain.

WOoNG, W., L1iu, W., AND BENNAMOUN, M. 2006. Integrated scoring for spelling error correction, abbrevi-
ation expansion and case restoration in dirty text. In Proceedings of the Fifth Australasian Conference
on Data Mining and Analytics. Sydney, Australia, 83—89.

XUE, Z., YIN, D., AND DAVISON, B. D. 2011. Normalizing microtext. In Proceedings of the AAAI-11 Work-
shop on Analyzing Microtext. San Francisco, USA, 74-79.

YEH, A. 2000. More accurate tests for the statistical significance of result differences. In Proceedings of the
18th Conference on Computational Linguistics - Volume 2. Saarbriicken, Germany, 947-953.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



Online Appendix to:
Lexical Normalisation for Social Media Text

Bo Han,* Paul Cook,” and Timothy Baldwin®®
& NICTA Victoria Research Laboratory
O Department of Computing and Information Systems, The University of Melbourne

© YYYY ACM 0000-0003/YYYY/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



