UNB/ CS/ David Bremner/ teaching/ cs4613/ examples/ racket/ flang.rkt
#lang plait
(define-type FLANG
  [Num  (val : Number)]
  [Add  (l : FLANG) (r : FLANG)]
  [Sub  (l : FLANG) (r : FLANG)]
  [Mul  (l : FLANG) (r : FLANG)]
  [Div  (l : FLANG) (r : FLANG)]
  [Id   (name : Symbol)]
  [Let1 (id : Symbol) (named-expr : FLANG) (bound-body : FLANG)]
  [Lam  (param : Symbol) (body : FLANG)]
  [Call (lam : FLANG) (val : FLANG)]) ; first type!

(define (parse-error sx)
  (error 'parse-sx (string-append "parse error: " (to-string sx))))

(define (sx-ref sx n) (list-ref (s-exp->list sx) n))

(define (parse-sx sx)
  (cond
    [(s-exp-number? sx) (Num (s-exp->number sx))]
    [(s-exp-symbol? sx) (Id (s-exp->symbol sx))]
    [(s-exp-match? `(let1 (SYMBOL ANY) ANY) sx)
     (let* ([def (sx-ref sx 1)]
            [id (s-exp->symbol (sx-ref def 0))]
            [val (parse-sx (sx-ref def 1))]
            [expr (parse-sx (sx-ref sx 2))])
       (Let1 id val expr))]
  [(s-exp-match? `(lam SYMBOL ANY) sx)
   (let* ([id (s-exp->symbol (sx-ref sx 1))]
          [body (parse-sx (sx-ref sx 2))])
     (Lam id body))]
  [(s-exp-match? `(ANY ANY) sx)
   (Call (parse-sx (sx-ref sx 0))
         (parse-sx (sx-ref sx 1)))]
  [(s-exp-list? sx)
     (let* ([l (λ () (parse-sx (sx-ref sx 1)))]
            [r (λ () (parse-sx (sx-ref sx 2)))])
         (case (s-exp->symbol (sx-ref sx 0))
           [(+) (Add (l) (r))]
           [(-) (Sub (l) (r))]
           [(*) (Mul (l) (r))]
           [(/) (Div (l) (r))]
           [(call) (Call (l) (r))]
           [else (parse-error sx)]))]
    [else (parse-error sx)]))


;; gets a Racket numeric binary operator, and uses it within a FLANG
;; `Num' wrapper (note H.O type)
(define (arith-op op expr1 expr2)
  (local
      [(define (Num->number e)
         (type-case FLANG e
           [(Num n) n]
           [else (error 'arith-op "expects a number")]))]
    (Num (op (Num->number expr1) 
             (Num->number expr2)))))

;; evaluates FLANG expressions by reducing them to *expressions*
(define (eval expr)
  (type-case FLANG expr
    [(Num n) expr]                             ; <- change here
    [(Add l r) (arith-op + (eval l) (eval r))]
    [(Sub l r) (arith-op - (eval l) (eval r))]
    [(Mul l r) (arith-op * (eval l) (eval r))]
    [(Div l r) (arith-op / (eval l) (eval r))]
    [(Let1 bound-id named-expr bound-body)
     (eval (subst bound-body
                  bound-id
                  (eval named-expr)))]         ; <- no `(Num ...)'
    [(Id name) (error 'eval "free identifier")]
    [(Lam bound-id bound-body) expr]           ; <- similar to `Num'
    [(Call lam arg-expr)
          (let [(funV (eval lam))]
            (type-case FLANG funV
              [(Lam bound-id bound-body)
                   (eval (subst bound-body                   ; <- just like `let1'
                                bound-id
                                (eval arg-expr)))]
              [else (error 'eval "`call' expects a function")]))]))

;; substitutes the second argument with the third argument in the
;; first argument, as per the rules of substitution; the resulting
;; expression contains no free instances of the second argument
(define (subst expr from to)
  (type-case FLANG expr
    [(Num n) expr]
    [(Add l r) (Add (subst l from to) (subst r from to))]
    [(Sub l r) (Sub (subst l from to) (subst r from to))]
    [(Mul l r) (Mul (subst l from to) (subst r from to))]
    [(Div l r) (Div (subst l from to) (subst r from to))]
    [(Id name) (if (eq? name from) to expr)]
    [(Let1 bound-id named-expr bound-body)
     (Let1 bound-id
           (subst named-expr from to)
           (if (eq? bound-id from)
             bound-body
             (subst bound-body from to)))]
    [(Call l r) (Call (subst l from to) (subst r from to))]
    [(Lam bound-id bound-body)
     (if (eq? bound-id from)
       expr
       (Lam bound-id (subst bound-body from to)))]))

(define (run sx)
  (let ([result (eval (parse-sx sx))])
    (type-case FLANG result
      [(Num n) n]
      [else (error 'run "returned a non-number")])))

(test (run `{let1 {identity {lam x x}}
              {let1 {foo {lam x {+ x 1}}}
                {{identity foo} 123}}})     
      124)

(test (run
       `{{{lam x {x 1}} {lam x {lam y {+ x y}}}} 123})
      124)