# report.py
import csv
def read_portfolio(filename):
'''
Read a stock portfolio file into a list of dictionaries with keys
name, shares, and price.
'''
portfolio = []
with open(filename) as f:
rows = csv.reader(f)
headers = next(rows)
for row in rows:
stock = {
'name' : row[0],
'shares' : int(row[1]),
'price' : float(row[2])
}
portfolio.append(stock)
return portfolio
def read_prices(filename):
'''
Read a CSV file of price data into a dict mapping names to prices.
'''
prices = {}
with open(filename) as f:
rows = csv.reader(f)
for row in rows:
try:
prices[row[0]] = float(row[1])
except IndexError:
pass
return prices
def make_report_data(portfolio, prices):
'''
Make a list of (name, shares, price, change) tuples given a portfolio list
and prices dictionary.
'''
rows = []
for stock in portfolio:
current_price = prices[stock['name']]
change = current_price - stock['price']
summary = (stock['name'], stock['shares'], current_price, change)
rows.append(summary)
return rows
# Read data files and create the report data
portfolio = read_portfolio('../../Work/Data/portfolio.csv')
prices = read_prices('../../Work/Data/prices.csv')
# Generate the report data
report = make_report_data(portfolio, prices)
# Output the report
headers = ('Name', 'Shares', 'Price', 'Change')
print('%10s %10s %10s %10s' % headers)
print(('-' * 10 + ' ') * len(headers))
for row in report:
print('%10s %10d %10.2f %10.2f' % row)