The Math.acosh()
static method returns the inverse hyperbolic cosine of a number. That is,
βxβ₯1,πΌπππ.πππππ(π‘)=arcosh(x)=the unique yβ₯0 such that cosh(y)=x=ln(x+x2β1)\begin{aligned}\forall x \geq 1,\;\mathtt{\operatorname{Math.acosh}(x)} &= \operatorname{arcosh}(x) = \text{the unique } y \geq 0 \text{ such that } \cosh(y) = x\&= \ln\left(x + \sqrt{x2 - 1}\right)\end{aligned}
Syntax
Math.acosh(x)
Parameters
x
- : A number greater than or equal to 1.
Return value
The inverse hyperbolic cosine of x
. If x
is less than 1, returns NaN.
Description
Because acosh()
is a static method of Math
, you always use it as Math.acosh()
, rather than as a method of a Math
object you created (Math
is no constructor).
Examples
Using Math.acosh()
Math.acosh(0); // NaN
Math.acosh(1); // 0
Math.acosh(2); // 1.3169578969248166
Math.acosh(Infinity); // Infinity