The metric cone describes the set of weightings of the edges of a complete graph that satisfy the triangle inequality. The metric polytope adds the additional constraint that the weights of any triangle sum to at most 2.
n(n-1)/2
2n(n-1)
85, 105, 95, 96, 101, 99
facet-degenerate, ridge-diameter
$t=0; for ($i=1; $i< $n; $i++){ for($j=$i+1; $j<=$n; $j++){ $edge[$i][$j]=$t; $edge[$j][$i]=$t; $t++ } } for ($i=1; $i< $n-1; $i++){ for($j=$i+1; $j<$n; $j++){ for ($k=$j+1; $k<=$n; $k++){ @bits=( (0) x ($n*($n-1)/2) ); $bits[$edge[$i][$j]]=1; $bits[$edge[$i][$k]]=1; $bits[$edge[$j][$k]]=-1; row(0,@bits); $bits[$edge[$i][$k]]=-1; $bits[$edge[$j][$k]]=1; row(0,@bits); $bits[$edge[$i][$j]]=-1; $bits[$edge[$i][$k]]=1; row(0,@bits); $bits[$edge[$i][$k]]=-1; $bits[$edge[$j][$k]]=-1; row(2,@bits); } } } returnmatrix();