cut(n)

description

                 
 

The cut polytope is the convex hull of all of the "cuts" in the complete graph on (n-1) vertices. For each subset S of vertices, define x(S) in {0,1}\binom(n,2) as xij(S) = 1 if S contains exactly one of i and j, and -1 otherwise.

dim

n(n-1)/2

n_vertices

2n-1

keywords

facet-degenerate

references

88, 97, 98

vertices

	
for ($c=0; $c<(2**($n-1)); $c++){
    coord(1);

    for ($i=1; $i< $n; $i++){
	for($j=$i+1; $j<=$n; $j++){
          $mask= 0| (1<<($i-1)) | (1 <<($j-1));
          if ((($c & $mask) != $mask) and (($c & $mask)!=0)){
		coord(1);
          } else {
		coord(-1);
          }
        }
    }
	
    newrow();		    

}

returnmatrix();