The cut polytope is the convex hull of all of the "cuts" in the complete graph on (n-1) vertices. For each subset S of vertices, define x(S) in {0,1}\binom(n,2) as xij(S) = 1 if S contains exactly one of i and j, and -1 otherwise.
n(n-1)/2
2n-1
facet-degenerate
88, 97, 98
for ($c=0; $c<(2**($n-1)); $c++){ coord(1); for ($i=1; $i< $n; $i++){ for($j=$i+1; $j<=$n; $j++){ $mask= 0| (1<<($i-1)) | (1 <<($j-1)); if ((($c & $mask) != $mask) and (($c & $mask)!=0)){ coord(1); } else { coord(-1); } } } newrow(); } returnmatrix();