
RuleML 1.0:
The Overarching Specification of Web Rules

Harold Boley1, Adrian Paschke2, and Omair Shafiq3

1 Institute for Information Technology, National Research Council Canada
Fredericton, NB, Canada

harold.boley AT nrc.gc.ca
2 Freie Universitaet Berlin, Germany

paschke AT mi.fu-berlin.de
3 University of Calgary, AB, Canada

moshafiq AT ucalgary.ca

Abstract. RuleML is a family of languages, whose modular system of
XML schemas permits high-precision Web rule interchange. The fam-
ily’s top-level distinction is deliberation rules vs. reaction rules. Deliber-
ation rules include modal and derivation rules, which themselves include
facts, queries (incl. integrity constraints), and Horn rules (incl. Data-
log). Reaction rules include Complex Event Processing (CEP), Knowl-
edge Representation (KR), and Event-Condition-Action (ECA) rules, as
well as Production (CA) rules. RuleML rules can combine all parts of
both derivation and reaction rules. This allows uniform XML serializa-
tion across all kinds of rules. After its use in SWRL and SWSL, RuleML
has provided strong input to W3C RIF on several levels. This includes the
use of ‘striped’ XML as well as the structuring of rule classes into sublan-
guages with partial mappings between, e.g., Datalog RuleML and RIF-
Core, Hornlog RuleML and RIF-BLD, as well as Production RuleML
and RIF-PRD. We discuss the rationale and key features of RuleML
1.0 as the overarching specification of Web rules that encompasses RIF
RuleML as a subfamily, and takes into account corresponding OASIS,
OMG (e.g., PRR, SBVR), and ISO (e.g., Common Logic) specifications.

1 Introduction

Rules on the Web come in various formats and with diverse packaging. Often,
however, the semantics of Web-distributed rule content are compatible. In such
cases, rulebases can be reused with an interchange technology consisting of a
family of canonical rule languages and bi-directional translators between canon-
ical languages and the languages to be interchanged. The need for Web rule
interchange has been increasing with the amount of business rules (incl. policies,
regulations, laws, . . .) in many domains (e.g. finance, engineering, healthcare,
. . .) on the Web 1.0, 2.0 (Social), and 3.0 (Social Semantic).

RuleML has been designed for the interchange of the major kinds of Web rules
in an XML format that is uniform across various rule languages and platforms.

2 Harold Boley, Adrian Paschke, and Omair Shafiq

It has broad covergage and is defined as an extensible family of languages, whose
modular system of XML schemas permits rule interchange with high precision,
as follows.

When a rulebase is prepared for interchange by a sender,

– it is translated to RuleML if the source document is not in the RuleML
format already,

– the Most Specific Schema (MSS) is determined against which the RuleML
document can be validated,

– the Internationalized Resource Identifier (IRI) of the MSS is pointed to from
the rulebase or is otherwise transmitted along with the rulebase.

When a rulebase is obtained by a receiver,

– it is validated against the same RuleML schema to exclude any too specific
MSS assignments and transmission errors,

– it is converted to the local format if the target document is not to be in
RuleML anyway.

The RuleML family constitutes a taxonomy of subfamilies, languages, and
sublanguages classified through the syntactic power of rules, as reflected by their
XML Schema Definitions (XSDs), and through their semantic power, as re-
flected by their model-theoretic, proof-theoretic, and operational semantics. Of-
ten, more syntactic power leads to more semantic power (e.g., the introduction
of Expression syntax pushes Datalog to Horn Logic (Hornlog) models in Sec-
tion 3.2). Syntactically neutral aspects of semantic power will be expressed by
semantic attributes (e.g., by a negation attribute for the semantics of Negation-
as-failure in Section 3.5).

Fig. 1, a simplified version of the RuleML taxonomy, shows the semantic
subfamilies of Deliberation rules for inference and Reaction rules for (re)action.
Deliberation rules, via Higher Order Logic (HOL) and First Order Logic (FOL),
subsume Derivation rules. Derivation rules subsume Hornlog and Datalog lan-
guages and (syntactically) specialize to the condition-less Fact and conclusion-
less Query languages (subsuming Integrity Constraint (IC) languages). Reaction
rules subsume Complex Event Processing (CEP) and Knowledge Representa-
tion (KR) rules, as well as Event-Condition-Action-Postcondition (ECAP) rules.
ECAP rules specialize to Event-Condition-Action (ECA) rules, which themselves
specialize to Condition-less Trigger (EA) rules and to the rule subfamily of
Event-less Production (CA) rules. The RuleML family also has ‘mix-ins’ for
Equality and (oriented) Rewriting, as well as for Naf. The Reaction subfamily
has mix-ins for Event Algebra, Action Algebra, etc.

While not shown in Fig. 1, RuleML languages make use of ‘pluggable’ libraries
of built-ins such as from the Semantic Web Rule Language (SWRL) [HPSB+04]
and the Rule Interchange Format (RIF) [PBK10]. There are also entire RuleML
languages we cannot further discuss in the confines of this paper, including for
uncertainty and fuzzy rules1 [DPSS08] and for defeasible rules2 [KBA08].

1 Fuzzy RuleML: http://www.image.ntua.gr/FuzzyRuleML
2 Defeasible RuleML: http://defeasible.org

RuleML 1.0: The Overarching Specification of Web Rules 3

Fig. 1. Taxonomy of RuleML rules.

The derivation rule languages have a Datalog language as their kernel. Dat-
alog RuleML is defined over both Data constants and Individual constants with
an optional iri attribute for webizing. Atomic formulas have n arguments, which
can be positional or slotted (key → term pairs). Object Oriented Datalog adds
optional types (sorts) and RDF-like oids via IRIs. Inheriting all of these Datalog
features, Hornlog RuleML adds positional and slotted Functional Expressions as
terms. In Hornlog – and other languages – with Equality, such uninterpreted
(constructor-like) functions are complemented by interpreted (equation-defined)
functions. This derivation rule branch is extended upward to FOL, including
disjunction (Or) in conclusions and strong Negation.

Reaction RuleML syntactically extends the condition (query) part of Deriva-
tion RuleML, whose condition-conclusion rules can be seen as ‘pure’ production
rules with conclusions as actions that just assert derived facts. For a discus-
sion of relationships between active and deductive rules see [Wid93]. Reaction
RuleML is based on ‘pluggable’ ontologies (e.g., algebras) of (complex) actions,
events, and – in the KR subfamily – situations. Production RuleML defines
condition-action rules. Complex Event Processing (CEP) RuleML defines (com-
plex) events and their efficient processing. Reaction RuleML extends production
rules with an event-triggering part, syntactically defining ECA rules, and with
further semantic extensions, e.g. for CEP rules.

RuleML rules can combine all parts of both derivation and reaction rules.
This allows uniform XML serialization across the rules from the taxonomy. A

4 Harold Boley, Adrian Paschke, and Omair Shafiq

general <Rule> element specifies the kind of rule with a style attribute, where
shortcuts allow specialized elements such as <Implies> and <Reaction>.

After its use in SWRL and the Semantic Web Services Language (SWSL)
[BBB+05], RuleML has provided input to W3C RIF [BK10a] on several levels.
This includes the use of ‘striped’ XML and the structuring of rule classes into a
family of sublanguages with partial mappings between, e.g., Datalog RuleML and
RIF-Core [PBK10], Derivation RuleML and RIF Basic Logic Dialect (RIF-BLD),
as well as Production RuleML and RIF Production Rule Dialect (RIF-PRD),
where RuleML’s <if> . . . <do> was adopted as RIF’s <if> . . . <then><Do>.

The RIF WG – after having achieved W3C Recommendation status in June
2010 – is scheduled to terminate with the end of September 2010 until an un-
certain revival for a possible RIF 2. RIF’s standard logic Web rule dialects Core
and BLD come with a rigorous model-theoretic semantics, embodying the WG’s
cascaded design decisions. However, the W3C Core and BLD Recommendations
cover only a fraction of the Web rule space and their very rigor gives existing
Web rule languages little room for RIF conformance. The RuleML Initiative –
whose symposia have been a forum for RIF advances from its beginning – has
thus been co-hosting the development of further (“non-standard extensions”3 or)
RIF dialects such as the Core Answer Set Programming Dialect (RIF-CASPD)
[HK09] and Semantic Inferencing on Large Knowledge (SILK) [GDK09], using
the flexibility-enhancing Framework for Logic Dialects (RIF-FLD) [BK10b], as
well as RIF RuleML sublanguages such as Datalog with equality plus externals
(Dlex) [Bol09] and the envisioned Reaction Rule Dialect (RRD).

Even languages that will not become (“standard extensions”3 or) RIF 2 Rec-
ommendations themselves can help with Web rule interoperability by consolidat-
ing the terrain and acting as connectors to other standards bodies such as OMG
and OASIS as well as business rule organizations such as BRF4 and stakeholders
in the private and public sectors. Based on [WATB04] and Production RuleML,
members of the Reaction RuleML Technical Group have already contributed to
OMG’s Production Rule Representation (PRR). RuleML is founding member
of the Event Processing Technical Society (EPTS), where it contributes to, and
co-chairs, the EPTS Reference Architecture group (ETPS-RA).

This paper, building on our experience with RuleML as the de facto stan-
dard for Web rules, discusses the design and definition of RuleML 1.0. As our
running example, we will give variations on the discount rule5 Implies 1 from
the RuleML 1.0 exa directory.6

The rest of the paper is organized as follows. Section 2 discusses the design
rationale of the overarching RuleML family of languages. Section 3 expands
on RuleML 1.0 deliberation rules. Section 4 explains its reaction rules. Section
5 presents selected tools and applications of RuleML. Section 6 concludes the
paper. Appendix A gives hints on the RuleML 1.0 XSLTs and XSDs.

3 http://www.w3.org/2005/rules/wg/charter.html
4 http://www.businessrulesforum.com
5 http://ruleml.org/lib/discount-variations.ruleml
6 http://ruleml.org/1.0/exa/Datalog/discount.ruleml

RuleML 1.0: The Overarching Specification of Web Rules 5

2 Design Rationale for RuleML

The specification of an overarching rule markup family with the primary purpose
of rule interchange between platform-specific rule languages as well as between
other rule standards for, e.g., Semantic Web rules or production rules, requires
the balancing of many (interrelated) design choices with respect to semantics,
syntax, and pragmatics. For instance, for a rulebase with advanced constructs
such as Naf, a single predefined semantics would limit its use as it becomes
impossible for many rule languages to be compliant with this specific semantics.
Similarly, a rigorous syntax which does not support extensibility will necessarily
lead to problems if more and more major rule types will be included in this
overarching rule markup family. The design rationale for RuleML addresses these
requirements.

The RuleML syntax strives for the following widely accepted design principles
for good language design:

– Minimality: the language provides only the set of needed language features,
i.e., except for macro-like extensibility shortcuts and an order-insensitive
abstract role syntax, the same construct is not expressed by different syntax.

– Referential transparency: the same language construct always expresses the
same semantics regardless of the context in which it is used.

– Orthogonality: the language constructs are pairwise independent, thus per-
mitting their meaningful systematic combination.

RuleML is designed as an extensible family of languages. In each of these
languages it provides a minimal set of needed language constructs which can be
applied in every meaningful combination in the respective expressiveness class
of the language. The language constructs are structured as modules in the XML
Schema definitions. This leads to a clear, compact, and precise design which is
easily adaptable, manageable, and extensible.

RuleML, as a general interchange format, can be customized for various se-
mantics of underlying (platform-specific) rule languages that should be repre-
sented and interchanged. Although a specific default semantics is always pre-
defined for each RuleML language, the intended semantics of a rulebase can
override it by using explicit values for corresponding semantic attributes. For
instance, a derivation rulebase represented in Datalog RuleML with Naf can be
explicitly declared to have Well-Founded (WF) or Answer Set (AS) semantics, with
AS as the default (cf. Section 3.5). Moreover, RuleML supports external domain
semantics such as ontologies, e.g. RDFS or OWL taxonomies, or class hierarchies,
e.g. object oriented models such as UML class models or Java class hierarchies.
These can be used as external order-sorted type systems for rule constructs,
e.g. variables and constants, giving them an interchangeable and machine inter-
pretable domain semantics. This flexible semantics approach of RuleML allows
refining the semantics of a syntactically represented rulebase.

From a pragmatic perspective, the layered RuleML design of Fig. 1 leads to a
compact syntax (in terms of language constructs) which is easier to learn, read,

6 Harold Boley, Adrian Paschke, and Omair Shafiq

understand, and apply by end users, as well as easier to extend in a modular way
with new languages and semantics. The modular family of languages also makes
it easy for machines to process RuleML, e.g. by translators that map between
platform-specific rule languages and an equivalent RuleML language. Addition-
ally, the pluggable-semantics approach supports correct machine understanding
and interpretation.

In summary, these design principles allow the overarching RuleML specifi-
cation to evolve into a standard for rule interchange that provides full coverage
of all major rule languages and their underlying semantics while still being an
easily usable and further extensible interchange language. A more detailed dis-
cussion of the design principles of RuleML and how it compares to other rule
markup and Semantic Web languages can be found in [PB09a].

3 Deliberation Rules

This section describes deliberation rules with a focus on derivation rules, pro-
ceeding bottom-up from Datalog. The inference-style Rule element <Rule

style="inference"> can be equivalently shortcut to the <Implies> element.

3.1 Datalog RuleML

Datalog [CGT89] is at the core of many rule languages and is close to relational
databases with recursive views. Datalog RuleML is defined over both Data con-
stants and Individual constants with an optional attribute, iri, for webizing.
RuleML’s Relational Atoms have m + n arguments (m ≥ 0, n ≥ 0), where m
arguments are positional and n are slotted (key → term pairs). In Datalog
RuleML, terms (e.g. used as positional arguments and slot fillers) can only be
constants or Variables. Datalog RuleML also has optional RDF-like type (on
constants and variables) and oid attributes via IRIs. It allows for an Equality
extension, e.g. to call built-ins from ‘pluggable’ libraries.

To initialize our running example, let us consider Datalog rule Implies 1 for
deriving discounts, with the ternary Relation discount and the unary premium

and regular all being positional. Three versions are given in the columns, where
the order of role-tagged children does not matter, and for skipped <if>/<then>
role stripes the first child is understood as the <if> role, the second as <then>:

<!-- Implication Rule 1:
Backward notation of ’then’ and ’if’ roles, as in Logic Programming, and forward notation
using natural ’if’ ... ’then’ order, as in textbook logic, with exact same meaning

"The discount for a customer buying a product is 5.0 percent
if the customer is premium and the product is regular."

Notice that the ternary discount relation is applied via an Atom.
Furthermore, a Data constant can syntactically be an entire phrase
like "5.0 percent". It will unify only with variables and with Data
having exactly the same spelling (incl. spaces)
-->

RuleML 1.0: The Overarching Specification of Web Rules 7

<Implies>
<then>

<Atom>
<Rel>discount</Rel>
<Var>cust</Var>
<Var>prod</Var>
<Data>5.0 percent</Data>

</Atom>
</then>
<if>

<And>
<Atom>

<Rel>premium</Rel>
<Var>cust</Var>

</Atom>
<Atom>

<Rel>regular</Rel>
<Var>prod</Var>

</Atom>
</And>

</if>
</Implies>

<Implies>
<if>

<And>
<Atom>

<Rel>premium</Rel>
<Var>cust</Var>

</Atom>
<Atom>

<Rel>regular</Rel>
<Var>prod</Var>

</Atom>
</And>

</if>
<then>

<Atom>
<Rel>discount</Rel>
<Var>cust</Var>
<Var>prod</Var>
<Data>5.0 percent</Data>

</Atom>
</then>

</Implies>

<Implies>

<And>
<Atom>

<Rel>premium</Rel>
<Var>cust</Var>

</Atom>
<Atom>

<Rel>regular</Rel>
<Var>prod</Var>

</Atom>
</And>

<Atom>
<Rel>discount</Rel>
<Var>cust</Var>
<Var>prod</Var>
<Data>5.0 percent</Data>

</Atom>

</Implies>

A slotted variant of our example uses pairs key → term in the conclusion’s
3-ary relation, and represents them as metaroles <slot>key term</slot> (we
will continue the <then> . . . <if> version, in the first column above, and elide
the unchanged condition, where slots would not add much to the readability of
unary relations):

<Implies>
<then>

<Atom>
<Rel>discount</Rel>
<slot><Data>buyer</Data><Var>cust</Var></slot>
<slot><Data>item</Data><Var>prod</Var></slot>
<slot><Data>rebate</Data><Data>5.0 percent</Data></slot>

</Atom>
</then>
<if> . . . </if>

</Implies>

A typed variant of our initial example can use Variables with the attribute
type, whose values are IRIs pointing to ontological class definitions on the Web
defined in RDFS and OWL:

<Implies>
<then>

<Atom>
<Rel>discount</Rel>
<Var type="http://xmlns.com/foaf/spec/#term_Person">cust</Var>
<Var type="http://daml.org/services/owl-s/1.0/ProfileHierarchy.owl#Product">prod</Var>
<Data>5.0 percent</Data>

</Atom>
</then>
<if> . . . </if>

</Implies>

3.2 Hornlog RuleML

Horn logic [Mak87] is the pure kernel of Prolog-like rule languages. In RuleML,
the corresponding Hornlog sublanguage is regarded as an extension of Datalog
RuleML, in particular of its Atoms: Besides constants and variables, Hornlog

8 Harold Boley, Adrian Paschke, and Omair Shafiq

RuleML allows positional and slotted Functional Expressions as terms in Atoms
and, recursively, in other Exprs. Expressions can be uninterpreted, using an
attribute per with filler "copy" or interpreted, using it with filler "value".
Other per fillers are "effect", for (side-)effectful Expressions, and "modal", for
modal Exprs.

We refine the initial example by introducing an uninterpreted Expr represent-
ing the constructor term percent[5.0], thus proceeding from Datalog to Horn
logic, for XSDs and Herbrand models (we again elide the unchanged condition):

<Implies>
<then>

<Atom>
<Rel>discount</Rel>
<Var>cust</Var>
<Var>prod</Var>
<Expr><Fun per="copy">percent</Fun><Data>5.0</Data></Expr>

</Atom>
</then>
<if> . . . </if>

</Implies>

3.3 FOL RuleML

First Order Logic (FOL) [End01] has been widely used as a knowledge represen-
tation language. FOL RuleML is an extension of Hornlog RuleML mainly adding
classical negation and (explicit) quantifiers. An earlier version of FOL RuleML
is part of the W3C member submission SWRL FOL.7

We modify our initial example as follows:

<!--
"A customer receives either a discount of 5.0 percent for buying a product
or a bonus of 200.00 dollar if the customer is premium and the product is regular."

Notice that an ’eXclusive or’ is used to shortcut
And(Or(A,B),Not(And(A,B))) to Xor(A,B) in the conclusion.
-->

<Implies>
<then>

<Xor>
<Atom><Rel>discount</Rel><Var>cust</Var><Var>prod</Var><Data>5.0 percent</Data></Atom>
<Atom><Rel>bonus</Rel><Var>cust</Var><Data>200.00 dollar</Data></Atom>

</Xor>
</then>
<if> . . . </if>

</Implies>

3.4 RuleML with Equality

Logics with a distinguished equality predicate [Nie07] have been used for specifi-
cation languages, where equality has been kept symmetric (via paramodulation)
or become oriented (via term rewriting or narrowing). In RuleML, Equality for-
mulas act as an extension to sublanguages such as Datalog RuleML, Hornlog

7 http://www.w3.org/Submission/2005/01

RuleML 1.0: The Overarching Specification of Web Rules 9

RuleML, and FOL RuleML. Equal has an oriented attribute whose "no" value
is assumed as the default.

We modify our initial example as follows:

<!-- Equational Rule 1’:
Conditional oriented equation returns rewritten value of first (left) Equal element
(’call-by-value’-interpreted binary discount function applied via Expr)
through second (right) Equal element (an alphanumeric Data value)

-->

<Implies>
<then>

<Equal oriented="yes">
<Expr><Fun per="value">discount</Fun><Var>cust</Var><Var>prod</Var></Expr>
<Data>5.0 percent</Data>

</Equal>
</then>
<if> . . . </if>

</Implies>

3.5 Naf RuleML

Besides strong Negation in FOL RuleML (cf. Section 3.3), Deliberation RuleML
also allows Negation-as-failure, as used in Logic Programming. This Naf RuleML
can be parameterized for Answer Set (AS) semantics (subsuming stable model
semantics) and for Well-Founded (WF) semantics, using a semantic attribute,
negation, on the enclosing Rulebase, whose default value is AS, accommodating
RIF-CASPD [HK09].

The following Rulebase example enforces Well-Founded semantics for Nafs in
the conditions of discount rules such as to exclude late-paying customers:

<Rulebase negation="WF">
<Implies>

<then>
<Atom><Rel>discount</Rel><Var>cust</Var><Var>prod</Var><Data>5.0 percent</Data></Atom>

</then>
<if>

<And>
<Naf>

<Atom><Rel>late-paying</Rel><Var>cust</Var></Atom>
<Naf>
. . .

</And>
</if>

</Implies>
. . .

</Rulebase>

4 Reaction Rules

Reaction rules are concerned with the invocation of actions in response to events
and actionable situations [PB09b]. They state the conditions under which actions
must be taken and describe the effects of action executions. In the last decades
various reaction rule languages and rule-based event processing approaches have
been developed, which for the most part have been advanced separately. The
Reaction RuleML subfamily addresses the four major reaction rule types:

10 Harold Boley, Adrian Paschke, and Omair Shafiq

– Production Rules (Condition-Action rules) in the Production RuleML sub-
family

– Event-Condition-Action (ECA) rules in the ECA RuleML subfamily
– Rule-based Complex Event Processing (complex event processing reaction

rules, (distributed) event messaging reaction rules, query reaction rules etc.)
in the CEP RuleML subfamily

– Knowledge Representation Event/Action/Situation Transition/Process Log-
ics and Calculi in the KR Reaction RuleML subfamily

The syntax of reaction rules in Reaction RuleML is defined on top of Deriva-
tion RuleML by a general rule format which can be specialized in the different
Reaction RuleML subfamilies to the four different reaction rule types (and vari-
ants of these types).

<Rule style="active|messaging|reasoning">

<oid> <!-- object id of the rule --> </oid>
<label> <!- (semantic) metadata of the rule --> </label>
<scope> <!- scope of the rule e.g. a rule module --> </scope>
<evaluation> <!-- intended semantics --> </evaluation>
<qualification> <!- e.g. qualifying rule declarations, e.g.

priorities, validity, strategy --> </qualification>
<quantification> <!-- quantifying rule declarations,

e.g. variable bingings --> </quantification>
<on> <!- event part --> </on>
<if> <!- condition part --> </if>
<then> <!- (logical) conclusion part --> </then>
<do> <!-- action part --> </do>
<after> <!- postcondition part after action,

e.g. to check effects of execution --> </after>
<else> <!- (logical) else conclusion --> </else>
<elsedo> <!-- alternative/else action,

e.g. for default handling --> </elsedo>
</Rule>

The execution style of a reaction rule is defined by the optional attribute
style.

– active: ‘actively’ polls/detects occurred events in ECA and CEP rules or
changed conditions in production rules

– messaging: waits for incoming complex event message (inbound) and sends
messages (outbound) as actions

– reasoning: logical / inference reasoning as e.g., KR formalisms such as event
/ action / transition logics (as e.g. in Event Calculus, Situation Calculus,
temporal action languages formalizations)

The evaluation semantics (interpretation and/or execution) of reaction rules
is defined in the optional role subchild evaluation. This can be used to define
rule evaluation semantics such as weak or strong evaluation which defines the
“execution lifecycle” of the rule execution.

A rule instance can be uniquely identified by an object identifier <oid>. The
metadata <label> is used to annotate the rule with optional metadata. The
scope <scope> defines a (constructive) view on the rulebase, e.g. the rule only
applies to a module in the rulebase. The qualification <qualification> defines

RuleML 1.0: The Overarching Specification of Web Rules 11

an optional set of rule qualifications such as a validity value, fuzzy value or a
priority value. The quantification <quantification> is used to define quantifiers
such as the typical existential and unversal quantification; it can also be used
for extensions such as variable binding patterns to restrict pattern matching in
production rules or define other operator definitions.

4.1 Production RuleML

A production rule is a statement of rule programming logic that specifies the ex-
ecution of one or more actions in case its conditions are satisfied, i.e. production
rules react to states changes (not to explicit events). The essential syntax is if

Condition do Action. Accordingly, standard production rules in the Production
RuleML subfamily are written as follows (an active-style Rule can be shortcut
to Reaction, which can be stripe-skipped for if as first child and do as second):

<Rule style="active">
<if>...</if>
<do>---</do>

</Rule>

<Reaction>
<if>...</if>
<do>---</do>

</Reaction>

<Reaction>
...

</Reaction>

Actions are Assert (add knowledge); Retract (retract knowledge); Update
(update/modify knowledge); Equal (single-assign term to variable); Execute

(execute (external) function).
Let us modify our initial example to a production rule which instead of just

deriving discounts does an Assert of them (Retract/Update would be similar):

<!-- Reaction Rule 1a (Production Rule with "Condition" and "Action"):
If premium and regular derivable do assert discount for customer -->

<Reaction>
<if>

<And>
<Atom><Rel>premium</Rel><Var>cust</Var></Atom>
<Atom><Rel>regular</Rel><Var>prod</Var></Atom>

</And>
</if>
<do>

<Assert>
<Atom><Rel>discount</Rel><Var>cust</Var><Var>prod</Var><Data>5.0 percent</Data></Atom>

</Assert>
</do>

</Reaction>

Relationships between Production RuleML and RIF-PRD: Members
of the Reaction RuleML Technical Group have co-edited the W3C RIF Pro-
duction Rule Dialect (RIF-PRD). RIF-PRD with inflationary negation is a less
expressive subset of PR RuleML. Syntactically, production rules in RIF-PRD are
written in if-then syntax instead of PR RuleML’s if-do syntax, which allows
a clear semantic distinction of a conclusion (then part) and action (do part),
when both are allowed for the same rule. Do as a type tag is used in RIF-PRD
to syntactically denote a compound action which is a sequence of standard pro-
duction rule actions (Assert, Retract, and Modify), whereas Reaction RuleML
supports expressive complex action definitions using action algebra operators.
Quantifying variable binding declarations are supported by RIF-PRD (declare)

12 Harold Boley, Adrian Paschke, and Omair Shafiq

and by Production RuleML (quantification), which in addition also supports rule
qualifications.

Relationships between Production RuleML and OMG PRR: Based on
[WATB04] and Production RuleML, members of the Reaction RuleML Tech-
nical Group have co-edited the OMG Production Rule Representation (PRR).
RuleML is one of the languages whose features are to be covered by PRR on
an abstract level. Since PRR is a meta-language, Production RuleML’s XML
syntax can be used as a concrete expression language instantiating PRR mod-
els. That is, OMG PRR provides a way to include rules into the (UML) model
of an application at design time and Production RuleML then provides a stan-
dard means of translating the model and feeding the executable rules into a PR
application at run time.

4.2 ECA RuleML

In contrast to production rules, Event-Condition-Action (ECA) rules define an
explicit event part which is separated from the conditions and actions of the
rule. Their essential syntax is on Event if Condition do Action. ECA RuleML
extends Production RuleML with an explicit <on> event part and rich (complex)
event and action constructs defined in event/action libraries (the active Rule

is again shortcut to Reaction, but the <on>/<if>/<do> role stripes are kept):

<Rule style="active">
<on>***</on>
<if>...</if>
<do>---</do>

</Rule>

<Reaction>
<on>***</on>
<if>...</if>
<do>---</do>

</Reaction>

We modify our example as follows:

<!-- Reaction Rule 1c (ECA Rule with "Event", "Condition", and "Action"):
On receiving premium notification from marketing and if regular derivable
do send discount to customer -->

<Reaction>
<on>

<Receive>
<from><Ind>marketing</Ind></from>
<content>

<Atom><Rel>premium</Rel><Var>cust</Var></Atom>
</content>

</Receive>
</on>
<if>

<Atom><Rel>regular</Rel><Var>prod</Var></Atom>
</if>
<do>

<Send>
<to><Var>cust</Var></to>
<content>

<Atom><Rel>discount</Rel><Var>cust</Var><Var>prod</Var><Data>5.0 percent</Data></Atom>
</content>

</Send>
</do>

</Reaction>

Variants of this standard ECA rule are, e.g., Event-Action triggers (EA rules)
and ECAP rules (ECA rules with Postconditions after the action part).

RuleML 1.0: The Overarching Specification of Web Rules 13

With its typed logic, RuleML supports the (re)use of external event/action
ontologies and metamodels which can be applied in the definition of semantic
event/action types. For instance, the following standard library defines a set of
typical event and action algebra operators:

Event Algebras and Action Algebras

Event Algebra:
Sequence (Ordered), Or (Disjunction), Xor (Mutal Exclusion),
And (Conjunction), Concurrent, Not, Any, Aperiodic, Periodic

Action Algebra:
Succession (Ordered Succession of Actions), Choice
(Non-Determenistic Choice), Flow (Parallel Flow),
Loop (Iterative Loop)

Furthermore different selection, consumption, and (transactional) execution
policies for events and actions can be specified in the complex event/action de-
scriptions. This allows for a highly extensible and flexible Semantic CEP (SCEP)
approach which (re-)uses external semantic models.

4.3 CEP RuleML

Complex Event Processing (CEP) is about the detection of complex events and
reaction to complex events in near realtime. CEP rules might adopt the style
of ECA rules in CEP RuleML, where the <on> event part might be a complex
event type definition; or, they might adopt the style of CA producion rules where
the complex event patterns are defined as restrictions on the variable binding
definitions in the rule quantifications. However, it is also possible to represent
serial messaging CEP reaction rules which receive and send events in arbitrary
combinations. A serial (messaging) reaction rule starts either with a receiving
event on – the trigger of the global reaction rule – or with a rule conclusion
then – the head of the local inline reaction rule – followed by an arbitrary
combination of conditions if, events receive and actions send in the body of
the rule. This flexibility with support for modularization and aspect-oriented
weaving of reactive rule code is in particular useful in distributed systems where
event processing agents communicate and form a distributed event processing
network, as e.g. in the following example:

<Rule style="active">
<on><Receive> receive event from agent 1 </Receive></on>
<do><Send> query agent 2 for regular products in a new sub-conversation </Send></do>
<on><Receive> receive results from sub conversation with agent 2 </Receive></on>
<if> prove some conditions, e.g. make decisions on the received data </if>
<do><Send> reply to agent 1 by sending results received from agent 2 </Send></do>

</Rule>

For better modularization, the sub-conversation can be also written with an
inlined reaction rule as follows:

<Rule style="active">
<on><Receive> receive event from agent 1 </Receive></on>
<if> <!- this goal activates the inlined reaction rule -- see below -->

<Atom><Rel>regular</Rel><Var>prod</Var></Atom>
</if>

14 Harold Boley, Adrian Paschke, and Omair Shafiq

<do><Send> reply to agent 1 by sending results received from agent 2 </Send></do>
</Rule>

<Rule style="active">
<then>

<Atom><Rel>regular</Rel><Var>prod</Var></Atom>
</then>
<do><Send> query agent 2 for regular products in a new sub-conversation </Send></do>
<on><Receive> receive results from sub conversation with agent 2 </Receive></on>

</Rule>

This messaging reaction rule can be translated e.g. into a serial messaging
Horn rule and executed in the Prova rule engine.8

Relationships between CEP RuleML and EPTS work: RuleML is a
founding member of the Event Processing Technical Society (EPTS). Members
of the Reaction RuleML Technical Group are contributing to the work on an
Event Processing glossary, use cases, reference architectures, and event process-
ing language models. With its flexible and extensible approach, CEP RuleML
is a highly expressive rule-based Event Processing Language (rule-based EPL)
which can make use of external event and action metamodels / ontologies such
as the many existing event ontologies or the planned OMG Event Model Pro-
file. Since CEP RuleML syntactically builds on top of Production RuleML and
ECA RuleML – besides flexible (messaging) reaction rules – both major rule
types can be used for representing (complex) event processing rules. Moreover,
CEP RuleML can adequately represent typical use cases and functionalities in
Event-Driven Architectures (EDAs) and (distributed) Event Processing Network
(EPN) architectures.

4.4 KR Reaction RuleML

Event/action logics, which have their origins in the area of knowledge rep-
resentation (KR), focus on the inferences that can be made from the hap-
pened or planned events/actions, i.e. they define the inferences of the effects of
events/actions on changeable properties of the world (situations, states). KR Re-
action RuleML defines syntax and semantics for KR event/action calculi such as
Situation Calculus, Event Calculus and Temporal Action Languages etc. Specif-
ically the notion of an explicit state (a.k.a. as state or fluent in Event Calculus)
is introduced in KR Reaction RuleML. An event/action initiates or terminates a
state. That is, a state explicitly represents the abstract effect of occurred events
and executed actions. Such states can be e.g. used for situation reasoning in the
condition part of reaction rules.

<Rule style="reasoning">
<on> <Message mode="inbound"> event message </Message> </on>
<if> <HoldsState> state individual </HoldsState> </if>
<do> <Message mode="outbound"> action message </Message> </do>

</Rule>

8 http://prova.ws

RuleML 1.0: The Overarching Specification of Web Rules 15

5 RuleML Tools and Applications

Several tools have already been built around RuleML, including rule engines
(e.g., OO jDREW9, Prova10), rule editors (e.g., Acumen Business Rule Man-
ager11, Syntactic-Semantic RuleML Editor (S2REd)12), as well as translators
such as the Reaction RuleML translator (Web) service framework13. Most of
these tools contribute to interoperability by making use of translators between
presentation syntaxes such as Pure Prolog (or extensions such as POSL14 and
Prova) and RuleML/XML as well as between RuleML/XML and other XML-
based languages such as RIF/XML. RIF RuleML interoperation was started
with a common subset [Bol09].

RuleML-based multi-agent architectures for distributed rule inference ser-
vices include Rule Responder15 [PBKC07] and Emerald16. Rule Responder ex-
tends the Semantic Web towards a Pragmatic Web infrastructure for collabora-
tive rule-based agent networks implemented as distributed rule inference services,
where agents engage in conversations by exchanging messages and cooperate to
achieve (collaborative) goals. Rule Responder utilizes messaging reaction rules
from Reaction RuleML for communication between the distributed agent infer-
ence services. The Rule Responder middleware is based on Enterprise Service
Bus (ESB) and Semantic Web technologies for implementing intelligent agent
services that access data and ontologies, receive and detect events (e.g. for com-
plex event processing in event processing agent networks), and make rule-based
inferences and autonomous pro-active decisions for reactions based on these rep-
resentations. Rule Responder has become the infrastructure for several Web 3.0
applications (e.g., PatientSupporter17).

6 Conclusion

RuleML 1.0 is the unifying family of languages spanning across all industrially
relevant kinds of Web rules. It accommodates and extends other languages in-
cluding W3C RIF. Yet, as shown by this paper, the major RuleML constructs
are easy to learn. FOL RuleML deliberation rules could be regarded as an in-
stantiation of the RIF Framework for Logic Dialects. However, for RIF-PRD
and Production RuleML no corresponding RIF Framework for Production Rule
Dialects exists, and for Reaction RuleML even a RIF instance dialect, RRD, is
only envisioned yet, although the ongoing RIF RuleML collaboration should sus-
tain progress here. On the other hand, Modal RuleML deliberation rules could

9 http://www.jdrew.org/oojdrew
10 http://www.prova.ws
11 http://www.acumenbusiness.com
12 http://sourceforge.net/projects/s2red
13 http://reaction.ruleml.org/translation.htm
14 http://ruleml.org/submission/ruleml-shortation.html
15 http://responder.ruleml.org
16 http://lpis.csd.auth.gr/systems/emerald/emerald.html
17 http://ruleml.org/PatientSupporter

16 Harold Boley, Adrian Paschke, and Omair Shafiq

be further developed in collaboration with corresponding Common Logic exten-
sions, as also needed for Semantics of Business Vocabulary and Business Rules
(SBVR).

Object Oriented RuleML’s slotted facts and rules can be used to define cases
and associated solutions in Case Based Reasoning (CBR). With its optional use
of types, which also accommodate finite domains, RuleML is well-prepared for a
Constraint Logic Programming (CLP) extension. A related Constraint Handling
Rules (CHR) extension could follow next.

Translators between sublanguages of RuleML, RIF, PRR, SBVR, Jess, Prova
(ISO Prolog) have been written and further ones are under development. RuleML
1.0 as the overarching specification of Web rules will thus help to unify and drive
the development of Web-based rule interoperation.

References

[BBB+05] Steve Battle, Abraham Bernstein, Harold Boley, Benjamin Grosof,
Michael Gruninger, Richard Hull, Michael Kifer, David Martin, Sheila
McIlraith, Deborah McGuinness, Jianwen Su, and Said Tabet. Se-
mantic Web Services Language (SWSL). Release Version 1.0,
http://www.daml.org/services/swsf/1.0/swsl/, May 2005.

[BK10a] Harold Boley and Michael Kifer. A Guide to the Basic Logic Dialect for
Rule Interchange on the Web. IEEE Transactions on Knowledge and Data
Engineering, Forthcoming 2010.

[BK10b] Harold Boley and Michael Kifer. RIF Framework for Logic Dialects, June
2010. W3C Recommendation, http://www.w3.org/TR/rif-fld.

[Bol09] Harold Boley. RIF RuleML Rosetta Ring: Round-Tripping the Dlex Sub-
set of Datalog RuleML and RIF-Core. In Guido Governatori, John Hall,
and Adrian Paschke, editors, RuleML, volume 5858 of Lecture Notes in
Computer Science, pages 29–42. Springer, 2009.

[CGT89] S. Ceri, G. Gottlob, and L. Tanca. What You Always Wanted to Know
About Datalog (And Never Dared to Ask). IEEE Trans. on Knowledge
and Data Eng., 1(1), March 1989.

[DPSS08] Carlos Viegas Damásio, Jeff Z. Pan, Giorgos Stoilos, and Umberto Straccia.
Representing Uncertainty in RuleML. Fundam. Inf., 82(3):265–288, 2008.

[End01] Herbert B. Enderton. A Mathematical Introduction To Logic. Har-
court/Academic Press,, San Diego, 2 edition, 2001.

[GDK09] Benjamin Grosof, Mike Dean, and Michael Kifer. The SILK System: Scal-
able Higher-Order Defeasible Rules. In 3rd International Rule Challenge,
at RuleML 2009, 5-7 November 2009, Las Vegas, Nevada, USA, 2009.

[HK09] Stijn Heymans and Michael Kifer. RIF Core Answer Set Program-
ming Dialect. W3C RuleML Specification, http://ruleml.org/rif/RIF-
CASPD.html/, December 2009.

[HPSB+04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Ben-
jamin Grosof, and Mike Dean. Semantic Web Rule Language (SWRL).
W3C Member Submission, http://www.w3.org/Submission/2004/SUBM-
SWRL-20040521/, May 2004.

[KBA08] Efstratios Kontopoulos, Nick Bassiliades, and Grigoris Antoniou. Deploy-
ing Defeasible Logic Rule Bases for the Semantic Web. Data Knowl. Eng.,
66(1):116–146, 2008.

RuleML 1.0: The Overarching Specification of Web Rules 17

[Mak87] Johann A. Makowsky. Why Horn formulas matter in computer science:
Initial structures and generic examples. Journal of Computer and System
Sciences, 34:266–292, 1987.

[Nie07] Robert Nieuwenhuis. A survey of some recent trends in rewrite-based and
paramodulation-based deduction, 2007.

[PB09a] Adrian Paschke and Harold Boley. Rule Markup Languages and Seman-
tic Web Rule Languages. In Adrian Giurca, Dragan Gasevic, and Kuldar
Taveter, editors, Handbook of Research on Emerging Rule-Based Languages
and Technologies: Open Solutions and Approaches, pages 1–24. IGI Pub-
lishing, May 2009.

[PB09b] Adrian Paschke and Harold Boley. Rules Capturing Events and Reactivity.
In Adrian Giurca, Dragan Gasevic, and Kuldar Taveter, editors, Handbook
of Research on Emerging Rule-Based Languages and Technologies: Open
Solutions and Approaches, pages 215–252. IGI Publishing, May 2009.

[PBK10] Axel Polleres, Harold Boley, and Michael Kifer. RIF Datatypes and
Built-ins 1.0, June 2010. W3C Recommendation, http://www.w3.org/

TR/rif-dtb.
[PBKC07] Adrian Paschke, Harold Boley, Alexander Kozlenkov, and Benjamin Craig.

Rule Responder: RuleML-Based Agents for Distributed Collaboration on
the Pragmatic Web. In 2nd ACM Pragmatic Web Conference 2007. ACM,
2007.

[WATB04] Gerd Wagner, Grigoris Antoniou, Said Tabet, and Harold Boley. The Ab-
stract Syntax of RuleML – Towards a General Web Rule Language Frame-
work. In Web Intelligence, pages 628–631. IEEE Computer Society, 2004.

[Wid93] Jennifer Widom. Deductive and Active Databases: Two Paradigms or Ends
of a Spectrum? In Rules in Database Systems, pages 306–315, 1993.

A XSLTs and XSDs for RuleML 1.0

The specification of RuleML 1.0 differs from the RuleML 0.91 specification by putting
more emphasis on XSLT, besides XML Schema: XSLT translators normalize RuleML
1.0 serializations, so XML Schema Definitions (XSDs) need to validate normal forms
only. Normal forms provide an abstract-syntax level, where the equality of arbitrary
RuleML 1.0 abstract syntaxes is reduced to the identity of their normal forms. They
also simplify the XSDs, e.g., avoiding the permutation of role children. For instance,
the normal form for derivation rules uses explicit role tags for <if> and <then> in that
order, as shown by the middle-column version of Implication Rule 1 in Section 3.1.

The XSDs of RuleML 1.0 change those of RuleML 0.91 as follows: Type tags Hterm

and Con are replaced with Uniterm and Const, respectively. Role tags body and head

are replaced with if and then, respectively. Role tags lhs and rhs, with left and

right, respectively. Attribute in="no|semi|yes|effect|modal" and respective values

are replaced with per="copy|open|value|effect|modal". Attribute uri becomes iri.

The online RuleML 1.0 specification is based on normalidation, including XSLTs for

normali zation and XSDs for subsequent validation.18 The specification is illustrated

by test cases grouped according to sublanguages.19

18 http://ruleml.org/1.0 (http://ruleml.org/1.0/xslt and http://ruleml.org/1.0/xsd)
19 http://ruleml.org/1.0/exa

