

Android Malware Categorization Using a Semi-Supervised Deep Learning Architecture Based on Ladder Networks Samaneh Mahdavifar, Mohammad Rasool Fatemi, Dima Alhadidi *Canadian Institute for Cybersecurity (CIC), University of New Brunswick (UNB)*

Abstract

Owning the largest share of Smartphone platform tendency, Android OS has changed to an undeniable target for many malware authors. According to real world scenario, most of Android malware applications don't benefit from having labels and applying supervised learning wouldn't be the right solution to pick. That's because of the major drawback of supervised learning, i. e., requiring lots of labeled data that is so expensive to collect. Addressing this issue, in this work, we employ a semi-supervised deep learning architecture, called, ladder networks that minimizes the sum of supervised and unsupervised cost functions by backpropagation at the same time. We craft two different types of feature vectors, namely, API Call frequency and API Call sequences to feed into ladder networks. The experimental results show a reasonable gap of 7-8% in total accuracy for 100 used labels and all used labels. At last, we fine-tune the learning parameters of ladder networks to improve its generalization ability and present corresponding graphs and diagrams

Previous Research

Year		Authors	Publication Title	Focus Area	Analysis Technique			
	2013	Aafer et. Al.	Droidapiminer: Mining api-level features for robust malware detection in android [SecureComm]	Android Malware Detection	Lightweight approach based on semantic information inside bytecode of the applications such as, invoked critical API calls, package level information as well as some important parameter			

Android Malware Categories

Malware by Category, Q2 2017

	2014	Zhang et. al.	Semantics-aware a classification using dependency graph	android malware gweighted contextual api as [ACM SIGSAC]	Android Malware Detection	Semantic-based approach that classifi weighted contextual API dependency	es Android malware via a graph			5.5%	Banking Keylogger	
	2017	Mariconti et. al.	Mamadroid: Detec building markov ch [NDSS]	cting android malware by nains of behavioral models	Android Malware Detection	Static Android malware detection syst sequences of abstracted API Calls which are used to build a Markov	em based on the / chain		68%		RAT Downloader	
	2016	Hou et. al.	Deep4maldroid: A framework for and based on linux ker call graphs [WIW]	deep learning Iroid malware detection nel system	Android Malware Detection using Deep Learning	Dynamic Android malware detection l of Linux kernel system calls using Stac	based on a weighted graph ked Auto-Encoders	Comparise	on of quarterly overall n	nessage volume	Point-of-Sale	
	Ladder Network						E	xperime	ents			
·	Auto-o shorto from t decod the hi	encoder w cut connec the encode ler at each erarchy	ith lateral tions er to the level of	$\mathcal{N}(0,\sigma^2) \longrightarrow OOO$ $f^{(2)}(\cdot)$	$\tilde{\mathbf{z}}^{(2)} \qquad g^{(2)}(\cdot, \cdot) \checkmark$ $\tilde{\mathbf{z}}^{(1)} \qquad g^{(1)}(\cdot, \cdot) \checkmark$		2 - "0": 3 "j 4 "j 5 - "c 6 7 8 } 9 ", 10 ", 11 ", 12 }, 13 - "1"	<pre>: { inputs": [], package": "com.android.music outputs": { "ReturnType": "java.lang.Bo "ReturnValue": "true" , class": "java.io.File", timestamp": 1477336771863, method": "exists" : {</pre>	:", oolean",	TABLE PARAMETER FIParameterlayers[4761, 1000learning rate0.02Decay-after5Batch-size20Epoch20	E I NE-TUNING Values , 500, 250, 250, 250, 5]	
				$\mathcal{N}(0,\sigma^2) \rightarrow \bigcirc \bigcirc \bigcirc \bigcirc$		$\overline{\bigcirc} C_d^{(1)} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \bigcirc$	14 ":	<pre>inputs": [], paskage", "com and raid music</pre>	Algorithm 1	Calculation of the output y and cost fu	nction C of the Ladder network	
 Allows the higher levels of the network to discard details and focus on representing more 			er levels of discard s on ore	$f^{(1)}(\cdot) \qquad \qquad$		$\hat{\mathbf{x}} = C_d^{(0)} \mathbf{x}$	15 " 16 - " 17 18 19 } 20 " 21 "	<pre>15</pre>		$ \begin{array}{llllllllllllllllllllllllllllllllllll$		·1))

Dataset and Results

Туре	Number			
Banking	250			
Ransomware	250			
Adware	250			
Botnet	250			
Benign	250			

TABLE II

 \mathbf{X}

Future Work

Practical

- We have to add more data to our dataset since doing so will improve the results and considering that we can get our hands on more data, this is definitely going to make a noticeable improvement in accuracy
- In the near future, there is going to be more works on semisupervised android malware detection and we need to compare our method to the other algorithms
- There are more datasets that we can trust and as a result, perform our model on them. This makes our method more comparable to others and also may open some new aspects to the problem.

Theorical

 The analysis of feature is rather incomplete, as we can extract more and better features from API call sequences and frequencies. Much remains to be done in this regard