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Question
How can we perform efficient
spatio-textual search on big data?

Example query:
Find pizza parlors within walking distance

Common Solutions
Most solutions separate search components resulting in 
potentially slower searches

For example: acquire all pizza-related results, then filter them by distance. 
All work done retrieving spatially irrelevant results is effectively wasted.

Example
Keys are kept as decimal digits and letters to simplify the visualisation
1: (42, 70; Bakery, Desserts, Delicatessen)
2: (46, 79; Bar, Alcohol)
3: (46, 79; Steakhouse, Alcohol, Desserts)

Our Solution
The Spatio-Textual InterLeaved Tree (STILT)
● Binary tree similar to a trie

○ Path to a leaf produced by interleaving components (example below)
○ Single child paths are compressed

● Does not contain data, only document IDs
○ Backed by I/O-efficient LSM-tree store [1]

● Each path represents 63 bits; 21 bits of text and 42 bits of location

How to index a document
An index is generated for each unique word of a document
2:(46, 79; Bar, Alcohol) → (46, 79; Alcohol), (46, 79; Bar)

The components are converted to binary strings
(46, 79; Alcohol) → (4, 7, a) → (0100, 0111, 0001)

The binary strings are combined with interleaving
(0100, 0111; 0001) → 000 110 010 011

Interpreting the binary digits as left (0) and right (1), the document id is 
stored at the corresponding leaf

Preliminary Results
Compared to I3 [2] 
● Uses ~20% less RAM to build
● Can be built ~4x faster
● Query throughput is ~10x higher (average over 1,000 queries)
● Supports concurrent searching and insertion

○ Concurrent deletion feasible but not implemented
○ I3 does not support dynamic operations (insertion, deletion)
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1: (42, 70; Bakery, Desserts, Delicatessen)
2: (46, 79; Bar, Alcohol)
3: (49, 79; Steakhouse, Alcohol, Desserts)


