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Introduction

Data depth is a method to generalize the concept of rank in

univariate data to multivariate data. By measuring the centrality of a

data point with respect to a data set, data depth gives a center-

outward ordering of points. Among different notions of data depth

that have been defined over the last decades, we focus on halfspace

depth and Spherical depth in this study.

In 1975, Tukey generalized the definition of univariate median and

defined the halfspace median as a point in which the halfspace depth

is maximized, where the halfspace depth is a multivariate measure of

centrality of data points. In general, the halfspace depth of a query

point 𝑞 with respect to a given data set 𝑆 is the smallest portion of

data points that are separated by a closed halfspace through 𝑞.

In 2006, Elmore et al. defined another notion of data depth named

spherical depth. The spherical depth of a query point 𝑞 with respect

to a data set 𝑆 is defined as the probability that 𝑞 is contained in a

closed random hyperball with the diameter 𝑥𝑖𝑥𝑗, where 𝑥𝑖 and 𝑥𝑗 are

every two points in 𝑆.

The results of this study, can be applied to develop an intrusion

detection system.

For two 𝑛𝑥𝑛 matrices 𝑃 and 𝑄, we define hamming distance 𝑑𝐻 to

measure the dissimilarity between these two matrices as follows:

𝑑𝐻 𝑃,𝑄 =෍

𝑖,𝑗

|𝑃𝑖𝑗 − 𝑄𝑖𝑗|
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- Bremner, D. and Shahsavarifar, R., 2017. On the Planar Spherical 

Depth and Lens depth. CCCG2017.
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For a d-dimensional point 𝑞 and a data set S ={𝑥1, … , 𝑥𝑛}⊆ ℝ𝑑:

 The halfspace depth of 𝑞 with respect to 𝑆 is defined as:

HD(q;S)=
1

𝑛/2
min {|S⋂𝐻|;𝐻 ∈ ℍ, 𝑞 ∈ 𝐻},

where ℍ is the class of all closed halfspaces in ℝ𝑑.

 The spherical depth of 𝑞 with respect to 𝑆 is defined as:

𝑆𝑝ℎ𝐷 𝑞; 𝑆 =
1
𝑛
2
σ1≤𝑖<𝑗≤𝑛 𝐼(𝑞 ∈ 𝑆𝑝ℎ(𝑥𝑖 , 𝑥𝑗)),

where 𝑆𝑝ℎ 𝑥𝑖 , 𝑥𝑗 is a hyperball with diameter xixj.
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Computation

Over the last years, many different algorithms have been developed

to compute the halfspace depth of a point in lower dimensions, or to

find a point with the maximum value of halfspace depth. However,

computing the halfspace depth in higher dimensions is a NP-hard

problem. On the other hand, computing the spherical depth in

dimension 𝑑 takes only 𝑂(𝑑𝑛2).

Fig: Halfspace depth (left) and spherical depth  (right) of points in 

the plane with respect to 𝑆 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5}.

Due to the hardness of computing the halfspace depth problem,

approximating this depth function is always of interests even in

lower dimensions. In our research we propose a novel method to

approximate the halfspace depth using another depth function (i.e.

spherical depth). We have chosen the spherical depth because it is

easy to implement even in higher dimensions. We approximate

halfspace depth using spherical depth in two different ways.

 Approximation using Euclidean distance

In this method, we basically take the advantages of machine learning

techniques. By training the approximation function and considering

different criterions, we select the best model to approximate

halfspace depth.

Halfspace depth=f(spherical depth),

where 𝑓 is the approximation function. We use some test sets to 

compute the error of approximation.

Fig: Function f approximates HD values using SphD values

Fig: Comparing the approximated values vs exact values of HD

Approximation using Hamming distance

In this method, we focus on measuring the dissimilarity between

the obtained Posets after applying the depth functions on a same

data set. For every depth function 𝐷 and a data set 𝑆 = 𝑥1, . . , 𝑥𝑛 ,
we define a matrix 𝑀𝑛𝑥𝑛 as follows:

𝑀 𝑖 𝑗 = ൞

−1 ; 𝐷 𝑥𝑖; 𝑆 < 𝐷(𝑥𝑗; 𝑆)

1 ; 𝐷 𝑥𝑖; 𝑆 > 𝐷(𝑥𝑗; 𝑆)

0 ; 𝐷 𝑥𝑖; 𝑆 = 𝐷(𝑥𝑗; 𝑆)

Using this representation, the hamming distance between depth

functions 𝐷1 and 𝐷2 on the same data set 𝑆 can be obtained by:

𝑑𝐻 𝐷1, 𝐷2 =
1

𝑛2 − 𝑛
෍

𝑖,𝑗

|𝑃𝑖𝑗 − 𝑄𝑖𝑗| ,

w here 𝑛2 − 𝑛 is the normalization factor, P and Q are the matrices

of 𝐷1 and 𝐷2, respectively.

- Bremner, D. and Shahsavarifar, R., 2017. An Optimal Algorithm 

for Computing the Spherical Depth of Points in the Plane. arXiv

preprint arXiv:1702.07399.

Based on the definitions, every depth function has a different

behaviour in ranking data points in a given data set. We apply two

different types of measures to approximate both the ranking

behaviour and depth values of a data depth function. The concept

of Euclidean distance helps us to approximate the halfspace depth

values using the spherical depth values. On the other hand, we

apply the hamming distance to approximate the ranking similarity

between halfspace depth and spherical depth.

As an application of our results, we use these methods to

approximate the outliers in a data set. This application motivates

us to develop an intrusion detection system.

Suppose that 𝑃1 and 𝑃2 are two Posets obtained from applying 𝐷1
and 𝐷2 on data set 𝑆 = 𝑎, 𝑏, 𝑐, 𝑑 , respectively.

Using the matrix representations of 𝑃1 and 𝑃2, it can be figured out

that the hamming distance 𝑑𝐻 𝐷1, 𝐷2 = 1/3. The higher value of

hamming distance means the less similarity in ranking behaviour

of depth functions.
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