Leveraging distributed representations and lexico-syntactic fixedness for token-level prediction of the idiomaticity of English verb-noun combinations

Milton King and Paul Cook

University of New Brunswick

IDIOM TOKEN CLASSIFICATION

- Verb-noun combination (VNC): Multiword expression consisting of a verb and a noun.
- Task: Determine if an instance of a verb-noun combination is idiomatic.

Hereford United were seeing stars at Gillingham

CANONICAL FORMS

• Lexico-syntactic patterns describing VNC instances.

Pattern No.	Pattern Signature		ıre	Example		
1	v_{act}	det:NULL	n _{sq}	give money		
2	v_{act}	det:a/an	n_{sg}	give a book		
3	v_{act}	det: <i>the</i>	n_{sg}	give the book		
4	v_{act}	det:DEM	n_{sg}	give this book		
5	v_{act}	det:POSS	n_{sg}	give my book		
6	v_{act}	det:NULL	n_{pl}	give books		
7	v_{act}	det: <i>the</i>	n_{pl}	give the books		
8	v_{act}	det:DEM	n_{pl}	give those books		
9	v_{act}	det:POSS	n_{pl}	give my books		
10	v_{act}	det:OTHER	$n_{sg,pl}$	give many books		
11	$v_{\it pass}$	det:ANY	$n_{sg,pl}$	a/the/this/my book/books was/were given		

Idiomatic after letting in 2 early goals

Look into the night sky to see the stars

MODELS

- Considered three approaches to representing VNC instances as a vector.
 - 1) Word2vec: Average word2vec skipgram embeddings for the words in a sentence.
 - 2) Siamese CBOW: Average siamese CBOW embeddings for the words in a sentence.
 - 3) Skip-thoughts: Autoencoder that is trained to generate an embedding for a sentence using recurrent neural networks.

• **Supervised Model**: We trained an SVM for each of these

 Idiomatic VNC usages tend to occur in 1 canonical form.

RESULTS								
	Modal		ΞV	TEST				
INIOUCI		-CF	+CF	-CF	+CF			
	CForm	_	0.721	-	0.749			
	Word2vec	0.830	0.854	0.804	0.852			
	Siamese CBOW	0.763	0.774	0.717	0.779			
	Skip-thoughts	0.803	0.827	0.786	0.842			

representations.

Literal

DATASET									
	DE	V	TES						
	Training	Testing	Training	Testing					
MWE types	14	14	14	14					
Idiom instances	270	92	298	90					
Literal instances	179	53	172	53					

CONCLUSIONS AND FUTURE WORK

• Conclusions:

• Averaging word2vec embeddings outperforms the previously applied skip-thoughts model.

• Employing information about canonical forms consistently improves all models.

• Future Work: Evaluate a word2vec model that is trained on the the same data as skip-thoughts.