
Detection and Prevention of Changes in the DOM Tree
Junaid Iqbal, Ratinder Kaur, Natalia Stakhanova

Canadian Institute for Cybersecurity (CIC), University of New Brunswick (UNB)

.

Problem Statement

DOM-based Cross-Site Scripting (XSS) is a type of XSS attack wherein the attack payload is executed as a result of

modifying the DOM environment in the victim's browser used by the original client-side script, so that the client-side

code runs in an unexpected manner. DOM-based XSS vulnerabilities are very difficult to detect because the target of

the malicious payload is the browser, as compared to other XSS vulnerabilities where target is server.

CIC

Document Object Model (DOM) DOM-based XSS

Proposed Solution

Directive Name Accepted Value Description Default value

attribute-attachment true | false Controls the attachment of attributes true

attribute-whitelist List of attributes Contains white-list of attributes

attribute-blacklist List of attributes Contains black-list of attributes

event-attachment true | false Controls the addition of events true

event-whitelist List of events Contains white-list of events

event-blacklist List of events Contains black-list of events 

style-modifications true | false Controls any type of CSS modifications true

shadow-attachment true | false Controls the attachment of shadow DOM false

protected true | false Controls any type of DOM modifications
Static or sensitive pages (login, 
about us, contact us) will be 
protected by default

Policy Language

1. Tag Selector

p {

Policy directives that applies to <p>

}

2. ID Selector

#some-id {

Policy directives that applies to <h1 id=“some-id”>

}

3. Class Selector

.note {

Policy directives that applies to <div class=“note”>

}

Selectors

p {

attribute-whitelist: class, name, id;

event-blacklist: click;

} #LoginForm {

protected: true;

}

.note {

style-modifications: false;

}

Policy Example

Directives List

Figure 1. Document Object Model (DOM) of a simple webpage Figure 2. Example of a DOM-based XSS attack

Figure 3. Proposed solution implemented in an open source browser Chromium Table 1. List of Directives that web developer can use to specify policies to protect the DOM

Work Done

Work in Progress

1. Retrieving policy string through HTTP header

2. Parsing policy string

3. Hooking DOM APIs

Conclusion
• We present an efficient client-side system to detect legit or malicious 
change in DOM of the webpage
• The web developer is able to control what part of the DOM can be 
modified or not using the policy language


