
iHOM: How to Enrich SQL Queries in CryptDB

Hassan Mahdikhani (PhD Student) and Rongxing Lu*

Contact Email: rlu1@unb.ca

Canadian Institute for Cybersecurity (CIC), University of New Brunswick (UNB)

.

Architectural Layering Model of CryptDB

ABSTRACT
Significant research studies have been conducted on implementing end-to-end database encryption which tries to convince users that privacy and security concerns are

addressed and resolved. To satisfy this requirement, homomorphic encryption allows computations to be done on ciphertexts without exposing and decrypting them and
aims to protect the security, confidentiality and privacy of computing components. In this paper, we propose a new iHOM scheme that supports the commonly used

arithmetic operations in database queries, i.e. multiplication and addition. The proposed scheme will be applied on CryptDB, the most arguably well-known encrypted

database system that can process SQL queries over encrypted data to provide practical and provable confidentiality. Since current CryptDB has a HOM scheme based on
Paillier Homomorphic encryption, the multiplication queries can not be performed at all. Thus, the new improved scheme, iHOM, will enhance existing capabilities of

CryptDB to run queries that contain both additive (+) and multiplicative (*) operations in a homomorphic way.

Onions of Encryptions in CryptDB

Proposed iHOM vs HOM

This study investigate the inability of HOM, to perform

multiplications and mixed computational SQL tasks,

afterwards an efficient symmetric homomorphic encryption

(SHE) scheme that covered the deficiency of CryptDB to

execute multiplication queries has been utilized to implement

proposed iHOM to enhance the the abilities of CryptDB.

Extensive experiments have been made to measure how

much iHOM has improved the ability and performance of

CryptDB.

The research on CryptDB should continue and

improvements to resolve the deficiency issues of

CryptDB could be achieved in future studies such

as executing complex computational expressions

which consist of addition, multiplication and

subtraction in mixtures of table columns and plain

values.

Threat Management Model
 Threat Management 1: By executing SQL commands over

encrypted data and SQL-Aware Encryption strategy not

only direct access to the physical memory of running

systems or virtual machines but also access to cloud side

DBMS by honest-but-curious database administrators will

not result in major concerns.

 Threat Management 2: As CryptDB makes use of different

keys for different users and data items, it is difficult for any

type of attackers to achieve significant data breach,

SHE Symmetric Homomorphic Encryption

 User-side interface (Client Side), where the desktop or web

application would be able to interact with encrypted database

transparently.

 CryptDB proxy (Secure Server Zone) stores master

keys,generates user database schema and maintains the

current status of encryption layer for each table columns.

 Unmodified DBMS provides conventional data management

services over encrypted data no architectural modifications are

applied and DBMS would operate like a typical one.

 Key Generation: KeyGen(λ) is a probabilistic function that generates secret key SK = (s, q) and public parameter p, i.e., (s, q, p) ← KeyGen(λ)

Where p, q are two prime numbers, p>>q and |p|=λ, the length of q also relies on some security parameter, and s is a number randomly picked from Z*
p.

 Encryption: 𝑐 = 𝐸𝑛𝑐 𝑆𝐾,𝑚, 𝑑, 𝑟 = 𝑠𝑑 𝑟𝑞 + 𝑚 𝑚𝑜𝑑 𝑝 . / Decryption: 𝑚 = 𝐷𝑒𝑐 𝑆𝐾, 𝑐, 𝑑 = 𝑐 × 𝑠−𝑑 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑞 .

 Homomorphic properties:

• Addition: Given two ciphertext 𝑐1 = 𝐸𝑛𝑐 𝑚1 = 𝑠𝑑1 𝑟1𝑞 +𝑚1 𝑚𝑜𝑑 𝑝 and 𝑐2= 𝐸𝑛𝑐 𝑚2 = 𝑠𝑑2 𝑟2𝑞 +𝑚2 𝑚𝑜𝑑 𝑝 , when d1 = d2 = α, (r1+r2)q < p and m1

+ m2 < q, we have have 𝐸(𝑚1; 𝑟1) · 𝑐1 + 𝑐2 = 𝐸𝑛𝑐(𝑚1 +𝑚2). or simplicity, we omit the random items, and we have 𝐸(𝑚1) · 𝐸(𝑚2) = 𝐸(𝑚1 +𝑚2).

• Multiplication: Given c1 = 𝐸𝑛𝑐 𝑚1 𝑚𝑜𝑑 𝑝 and c2 = 𝐸𝑛𝑐 𝑚2 𝑚𝑜𝑑 𝑝 , we have c1 × c2 mod p = Enc(m1 ×m2).

• Scalar Multiplication: For a ciphertext 𝑐1 = 𝐸𝑛𝑐 𝑚1 = 𝑠𝑑1 𝑟1𝑞 +𝑚1 𝑚𝑜𝑑 𝑝 and a message m2 ∈ 𝑍𝑞 we have c1×m2 mod p = Enc(m1 × m2).

Conclusion Future work

CIC

Query HOM i HOM Description

id1 + id1 id1 is a table column.

id1 + id2 Distinct columns in a same table.

id1 + m id1 is a table column & m is scalar.

id1 + Enc(m) Complex expressions (e.g. id+20×id).

id1 × id1

id1 × id2

id1 × m

id1 × Enc(m)

SUM(id1) Aggregate function.

Performance Evaluation

SELECT * FROM tblUNB WHERE id=12;
 Proxy Parser

SELECT * FROM table_OXGJLCGZJI WHERE CRZUEUDCKBo Eq = x27c3e

SUM(id)
Aggregation

id × id
HOM dose not support multiplication.

id × m(plaintext) id + m (plaintext) Id + id

Unmodified DBMS

Data
(Encrypted)

Encrypted

Key Table

CryptDB UDFs

(UID1, Pswd1)

Active Session

Client Side Cloud Side DBMS

Threat 1

Database ProxyApplication

Key Setup

Active Keys:
Pswd1

Automated
Scheme

Secure Server Zone (Application Server + CryptDB Proxy)

Threat 2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 100 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5 5k 10k

Ti
m

e
(m

s)

No of records (k=1000)

iHOM: id*20

iHOM: id*Enc(20)

HOM dose not support multiplication

0

100

200

300

400

500

600

700

800

900

1000

10 100 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5 5k 10k

Ti
m

e
(m

s)

No of records (k=1000)

iHOM HOM

0

2000

4000

6000

8000

10000

12000

10 100 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5 5k 10k

Ti
m

e
(m

s)

No of records (k=1000)

iHOM HOM

0

1000

2000

3000

4000

5000

10 100 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5 5k 10k

Ti
m

e
(m

s)

No of records (k=1000)

iHOM HOM dose not support multiplication

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 100 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5 5k 10k

Ti
m

e
(m

s)

No of records (k=1000)

iHOM: id+20 iHOM: id+Enc(20) HOM: id+20

RND

DET

text or int value

JOIN

Onion Eq

RND

OPE

text or int value

OPE-JOIN

Onion Order

int value

HOM

Onion ADD

text value

SEARCH

Onion Search

tblUNB

id int(11)

name text

table_OXGJLCGZJI

CRZUEUDCKBoEq bigint(20) unsigned

RABXKOCQQLoOrder bigint(20) unsigned

BXVJPELPQWoADD varbinary(256)

cdb_saltHKIQHAYMJK bigint(8) unsigned

XQKYPUNRNFoEq blob

DOCAZTFLIXoOrder bigint(20) unsigned

cdb_saltAVOBPUXUYI bigint(8) unsigned

