
Achieve Efficient and Privacy Preserving Range Query over Encrypted Data in Cloud 
Deepigha	Shree	Vittal Babu(Master	Student)	and	Rongxing Lu*	

Contact	Email:	rlu1@unb.ca	
Canadian	Institute	for	Cybersecurity	(CIC),	University	of	New	Brunswick	(UNB)	

.

ABSTRACT
Cloud computing is now evolving like never before. While cloud computing is undoubtedly beneficial to our lives, it is not without its downsides, due to the significant security
challenges in cloud. It is still challenging to efficiently process encrypted data in semi-trust cloud server. Therefore, there is a high desire to design query mechanisms over encrypted
data in cloud to achieve both privacy and efficiency. In this paper, we propose range query processing scheme that achieves both privacy and efficiency at the same time over
encrypted data. The elements are organised on B+ Plus tree which helps in achieving efficiency as searching of any data in a B+ tree is very easy because all data is found in leaf
nodes and these leaf node data are ordered in a sequential linked list.

CIC

System InitializationSystem Model

Conclusion

Cloud	Server

User Data	Owner

Encrypted	Data	
Outsourcing

Query Authorization

Range	Query

Query	
Response

Data	owner:	
• Data	owner	is	a	server	provider	which	owns	a	

set	of	records.	
• Encrypts	the	record	outsourcing	to	the	cloud.	
• Authorizes	the	users.

Cloud	server:	
• Stores	the	outsourced	data	from	the	data	

owner,
• Processes	and	responds	the	range	queries	

from	the	authorized	users.	

End	user:	
• Queries	those	records	of	interest	to	him/her.	
• Decrypts	the	records	from	the	cloud

• The	data	owner	sets	the	BGN	public	key	pk =	
(N,G,GT,e,g,h)	and	the	private	key	sk =	p,	where	h	=	gq.	

• The	data	owner	chooses	a	secure	AES	encryption	
algorithm	Enc(.)	and	a	cryptographic	hash	function
H	:	{0,	1}*	➝ ZN ,	

bhvand also	chooses	three	secret	keys	k,s,t €	ZN.	
• Finally,	the	data	owner	keeps	(p,k,s,t)	secretly,	and	

publishes	pk =	(N,	G,	GT	,	e,	g,	h),	Enc(.),	and	
H	:	{0,	1}*	➝ ZN .	

• Keys	(p,k,s,t)	are	kept	secretly,	and	publishes	pk =	(N,	G,	
GT ,	e,	g,	h),	Enc(.),	and	hash	value	set	H.	

• The	data	owner	assigns	the	processing	key	gpt €	G	to	the	
cloud	server	and	the	access	keys	(k,	gs,	gs2	)	to	the	end	
user.	

BGN Homomorphic Encryption 
• Key	Generation:		Given	the	security	parameter K,	composite	bilinear	

parameters	(N,g,G,GT,e)	are	generated	by	C	Gen(K),	where	N	=	pq and	p,	
q	are	two-bit	prime	numbers,	and	g	€ G	is	a	generator	of	order	n.	
Set	h	=	gq,	then	h	is	a	random	generator	of	the	subgroup	of	G	of	order	p.	

bhThe public	key	is	pk =	(N,	G,	GT	,	e,	g,	h),	and	the	corresponding	private	
bhkey is	sk =	p.	
• Encryption:	Compute	the	cipher	text	c	=	E(m,	r)	=	gmhr €	G	where	m	is	

the	message	and	r	is	a	random	number	r		€	 ZN.	
• Decryption:	Given	c,	the	corresponding	message	can	be	recovered	by	

the	private	key	p.	Observe	that	cp =	(gmhr)p =	(gp)m.	Let	g’	=	gp.	
To	find	m,	it	suffices	to	compute	the	discrete	log	of	cp base	g’

The	BGN	encryption	enjoys	the	following	homomorphic	properties:	
•	Addition	in	G:	E(m1)	·	E(m2)	=	E(m1 +	m2).	
•	Multiplication	in	G:	E(m1)m2 =	E(m1 ·	m2).	
•	Multiplication	from	G	to	GT :	e(E(m1),E(m2))	=	ET(m1 ·m2)	€ GT,	where	ET (·)	
bdenotes a	ciphertext in	GT .	
•	Addition	in	GT :	ET(m1)·ET(m2)=ET(m1 +m2).	
•	Multiplication	in	GT :	ET (m1)m2 =	ET (m1 ·	m2).	

B+ Tree Implementation
• For	each	record	Ri €	R,	the	data	owner	first	obtains	its	key	x	=	R.key.	

Then,	based	on	the	keys		(x1,	x2,	·	·	·	),	the	data	owner	constructs	a	B+	
Tree	as	shown	in	figure.

• Each	record	Ri €	R,	is	encrypted	using	AES	encryption	and	for	its	key	xi =	
Ri.key,		BGN	BGN	encryption	algorithm	is	used	[xi]	=	Cxi =	(gs)xi ·	hri
where	ri €	ZN is	a	random	number.	

• The	data	owner	replaces	each	record	(Ri,xi)	with	([Ri],[xi])	on	the	B+	Tree	
and	obtains	the	corresponding	encrypted	B+	Tree,	as	shown	in.

• In	B+	tree,	leaf	node	data	are	ordered	in	a	sequential	linked	list.	
Therefore,	the	data	owner	can	get	a	set	of	sorted	encrypted	records	ER	
=	{ER1,	ER2,	·	·	·	}	by	traversing	through	the	leaf	nodes.	

• The	data	owner	outsources	the	encrypted	B+	tree	and	the	sorted	
encrypted	records	ER	=	{ER1,ER2,···}	to	the	cloud	server.

• Searching	of	any	data	in	a	B+	tree	is	very	easy	because	all	data	is	found	
in	leaf	nodes.

• Upon	receiving	the	range	query,	the	cloud	server	determines	the	upper	
bound	and	lower	bound	in	the	encrypted	tree.

• Once	the	upper	bound	and	lower	bound	are	localized	the	encrypted	
records	between	them	can	be	easily	retrieved.

Privacy-Preserving Comparison Algorithm
The	privacy	preserving	comparison	algorithm	is	used	while	
localizing	the	the	upper	bound	and	lower	bound	while	
query	processing.
• Starting	from	the	root	node,	the	cloud	server	runs	this	

algorithm.	If	the	returned	value	is	0,	continue	to	use	the	
algorithm	to	compare	the	upper	bound/lower	bound	
with	the	left	child	in	the	encrypted	B+	Tree.	

• Otherwise,	continue	to	use	the	algorithm	to	compare	
with	the	right	child	in	the	encrypted	B+	Tree,	until	the	
location	that	it	should	be	inserted	is	found.	

• Once	the	location	is	found,	the	upper	bound/lower	
bound	can	be	localized.	

• We	have	proposed	an	efficient	range	query	processing	
scheme	that	guarantees	strong	privacy	over	
encrypted	data	in	cloud.	

• Since	the	proposed	scheme	is	integrated	with	the	
encrypted	B+	Tree	and	privacy-preserving	comparison	
techniques,	which	is	not	only	privacy-preserving	
against	the	cloud	server	but	also	high	efficient	in	the	
range	query	execution.	

• This	scheme	can	efficiently	support	real-time	range	
queries.

Hash Function
The	hash	function	is	defined	as	follows

• Assume	the	value	range	of	key	x	is	
[0,l],	then	for	any	two	keys	xi,xj,	if	xi -
xj<	0	,	then	range	of	xi	- xj is	[	l,	0)

• Define	a	private	function,PF
PF	(x)	=	H(e(g,	g)pst(s+x)).	

• For	each	value	x	2	[	l,0),	compute	
H(x)	=	PF(x),

and	form	the	hash	value	set	
H	=	{H1,H2,···	,Hl}.	

In	this	paper,	we	generalize	the	
above	two	type	of	range	queries	
as	one

select	*	from	table	where	
[age]+[y]	between	[a]	and	[b]	

where	(a,b,y)	are	integer	
parameters	provided	in	the	range	
query	

Range Query


