
Achieve Efficient and Privacy Preserving Range Query over Encrypted Data in Cloud
Deepigha Shree Vittal Babu (Master Student) and Rongxing Lu*

Contact Email: rlu1@unb.ca
Canadian Institute for Cybersecurity (CIC), University of New Brunswick (UNB)

.

ABSTRACT
Cloud computing is now evolving like never before. While cloud computing is undoubtedly beneficial to our lives, it is not without its downsides, due to the significant security

challenges in cloud. It is still challenging to efficiently process encrypted data in semi-trust cloud server. Therefore, there is a high desire to design query mechanisms over encrypted

data in cloud to achieve both privacy and efficiency. In this paper, we propose a range query processing scheme that achieves both privacy and efficiency at the same time over

encrypted data. The elements are organised on B+ tree which helps in achieving efficiency as searching of any data in a B+ tree is very easy because all data is found in leaf nodes

and these leaf node data are ordered in a sequential linked list.

CIC

System Initialization System Model

Conclusion

Cloud Server

User Data Owner

Encrypted Data
Outsourcing

Query Authorization

Range Query

Query
Response

Data owner:
• Data owner is a server provider which owns a

set of records.
• Encrypts the records outsourced to the cloud.
• Authorizes the users.

Cloud server:
• Stores the outsourced data from the data

owner,
• Processes and responds the range queries

from the authorized users.

End user:
• Queries those records of interest to him/her.
• Decrypts the records from the cloud

• The data owner sets the BGN public key 𝑝𝑘 =
 (𝑁, 𝐺, 𝐺𝑇 , 𝑒, 𝑔, ℎ) and the private key 𝑠𝑘 = 𝑝, where
ℎ = 𝑔𝑞.

• The data owner chooses a secure AES encryption
algorithm Enc(.) and a cryptographic hash function

 H : {0, 1}* ➝ ZN ,
bhvand also chooses three secret keys 𝑘, 𝑠, 𝑡 ∈ 𝑍𝑁.
• Finally, the data owner keeps (p,k,s,t) secretly, and

publishes pk = (𝑁, 𝐺, 𝐺𝑇 , 𝑒, 𝑔, ℎ), Enc(.), and
 H : {0, 1}* ➝ ZN .
• Keys (p,k,s,t) are kept secretly, and publishes pk = (N, G,

GT , e, g, h), Enc(.), and hash value set H.
• The data owner assigns the processing key gpt ∈ G to the

cloud server and the access keys (k, gs, gs2) to the end
user.

BGN Homomorphic Encryption
• Key Generation: Given the security parameter K, composite bilinear

parameters (N,g,G,GT,e) are generated by C Gen(K), where N = pq and p,
q are two-bit prime numbers, and g € G is a generator of order n.

 Set h = gq, then h is a random generator of the subgroup of G of order p.
bhThe public key is pk = (N, G, GT , e, g, h), and the corresponding private
bhkey is sk = p.
• Encryption: Compute the cipher text c = E(m, r) = gmhr ∈ G where m is

the message and r is a random number r ∈ ZN.
• Decryption: Given c, the corresponding message can be recovered by

the private key p. Observe that cp = (gmhr)p = (gp)m. Let g’ = gp.
 To find m, it suffices to compute the discrete log of cp base g’
The BGN encryption enjoys the following homomorphic properties:
• Addition in G: E(m1) · E(m2) = E(m1 + m2).
• Multiplication in G: E(m1)m2 = E(m1 · m2).
• Multiplication from G to GT : e(E(m1),E(m2)) = ET(m1 ·m2) ∈ GT, where ET (·)
bdenotes a ciphertext in GT .
• Addition in GT : ET(m1)·ET(m2)=ET(m1 +m2).
• Multiplication in GT : ET (m1)m2 = ET (m1 · m2).

B+ Tree Implementation
• For each record Ri ∈ R, the data owner first obtains its key x = R.key.

Then, based on the keys (x1, x2, · · ·), the data owner constructs a B+
Tree as shown in figure.

• Each record Ri ∈ R, is encrypted using AES encryption and for its key xi =
Ri.key, BGN BGN encryption algorithm is used [xi] = Cxi = (gs)xi · hri
where ri ∈ ZN is a random number.

• The data owner replaces each record (Ri,xi) with ([Ri],[xi]) on the B+ Tree
and obtains the corresponding encrypted B+ Tree, as shown in.

• In B+ tree, leaf node data are ordered in a sequential linked list.
Therefore, the data owner can get a set of sorted encrypted records ER
= {ER1, ER2, · · · } by traversing through the leaf nodes.

• The data owner outsources the encrypted B+ tree and the sorted
encrypted records ER = {ER1,ER2,···} to the cloud server.

• Searching of any data in a B+ tree is very easy because all data is found
in leaf nodes.

• Upon receiving the range query, the cloud server determines the upper
bound and lower bound in the encrypted tree.

• Once the upper bound and lower bound are localized the encrypted
records between them can be easily retrieved.

Privacy-Preserving Comparison Algorithm

The privacy preserving comparison algorithm is used while
localizing the the upper bound and lower bound while
query processing.
• Starting from the root node, the cloud server runs this

algorithm. If the returned value is 0, continue to use the
algorithm to compare the upper bound/lower bound
with the left child in the encrypted B+ Tree.

• Otherwise, continue to use the algorithm to compare
with the right child in the encrypted B+ Tree, until the
location that it should be inserted is found.

• Once the location is found, the upper bound/lower
bound can be localized.

• In this paper, we have proposed an efficient range
query processing scheme that guarantees strong
privacy over encrypted data in cloud.

• Since the proposed scheme is integrated with the
encrypted B+ Tree and privacy-preserving comparison
techniques, which is not only privacy-preserving
against the cloud server but also high efficient in the
range query execution.

• This scheme can efficiently support real-time range
queries.

Hash Function
The hash function is defined as follows

• Assume the value range of key x is

[0,l], then for any two keys xi,xj, if xi -
xj< 0 , then range of xi - xj is [-l, 0)

• Define a private function PF
 PF (x) = H(e(g, g)pst(s+x)).

• For each value x ∈ [-l,0), compute
 H(x) = PF(x),
 and form the hash value set
 H = {H1,H2,··· ,Hl}.

In this paper, we generalize the
above two type of range queries
as one

select * from table where
[age]+[y] between [a] and [b]

where (a,b,y) are integer
parameters provided in the range
query

Range Query

