
Achieving Efficient and Privacy-Preserving Multi-Domain Big Data Deduplication in Cloud
Xue Yang (Visiting Student), Rongxing Lu*, Jun Shao, Xiaohu Tang and Ali A. Ghorbani

Contact Email: rlu1@unb.ca
Canadian Institute for Cybersecurity (CIC), University of New Brunswick (UNB)

.

System Model

ABSTRACT
Secure data deduplication, as it can eliminate redundancies over encrypted data, has been widely developed in cloud storage to reduce storage space and communication

overheads. Among them, the convergent encryption has been extensively adopted. However, it is vulnerable to brute-force attacks that can determine which plaintext in a

message space corresponds to a given ciphertext. Many existing schemes have to sacrifice efficiency to resist brute-force attacks, especially for cross-domain

deduplication, which is contrary to practical applications. Moreover, few existing schemes consider protecting the linkability information. In this paper, we propose an

efficient and privacy-preserving big data deduplication scheme for a two-level multi-domain architecture. Specifically, by generating a random tag and constant size random

ciphertexts for each data, our scheme not only ensures data confidentiality and availability under multi-domain deduplication but also resists brute-force attacks. By allowing

only the cloud service provider to perform cross-domain duplication checking over random tags, our scheme can protect the linkability information from disclosure as much

as possible. Detailed security analysis shows that our scheme achieves privacy-preservation for both data content and the linkability information, data availability and

integrity while resisting brute-force attacks. Furthermore, extensive simulations demonstrate that our scheme significantly outperforms the existing competing scheme, in

terms of computational, communication and storage overheads together with the time complexity of the duplicate search.

1. System Initialization

3. Data Download

2. Data Upload

Design Goals

The KDS generates the composite bilinear parameters

tuple 𝑁 = 𝑝𝑞, 𝐺, 𝐺𝑇 , 𝑒 , and then generates system

parameters and private keys as follows.

 Randomly choose two generators 𝑔, 𝑥 ∈ 𝐺 , and two

numbers 𝛼, 𝛾 ∈ 𝑍𝑁 and then compute 𝑦 = 𝑥𝑞 ,

𝑣 = 𝑔𝛾 , 𝑔𝑖 = 𝑔𝛼𝑖
 for 𝑖 = 1,2, … , 𝑛, 𝑛 + 2,… , 2𝑛 .

 For all users in 𝐷𝑖, compute the private key: 𝑑𝑖 = 𝑔𝑖
𝛾
.

 Choose three cryptographic hash functions: ℎ1: *0,1+
∗→

*0,1+𝜅1, ℎ2: *0,1+
∗→ *0, 1+𝜅0−1 and ℎ3: 𝐺 → *0,1+𝜅1.

 The proposed scheme should ensure data

confidentiality, availability and integrity while

resisting brute-force attacks.

 The proposed scheme should be computation,

communication, and storage efficient.

 Key distribution server (KDS): is responsible for generating

private keys for users and a secret for the cloud service provider.

 Cloud service provider (CSP) : offers storage services for users

and conducts the inter-deduplication over outsourced data.

 Agency (𝑨𝒊): performs intra-deduplication and transforms the intra-

tag into a random inter-tag.

 User: outsource encrypted data to the CSP for storage.

CIC

 Tag generation: For uploading the data m, U generates an intra-tag with the private key 𝑑𝑖 as 𝜏𝑚 = 𝑑𝑖
ℎ2(𝑚)

. Then, U sends a

message ``𝑢𝑝𝑙𝑜𝑎𝑑 ∥ (𝐿𝑚, 𝜏𝑚)’’ to 𝐴𝑖.

 Intra-deduplication: 𝐴𝑖 computes 𝑇𝑚 = ℎ3 𝜏𝑚 , and checks whether a duplicated exists. If a duplicate exists, U does not need to

upload m. Otherwise, 𝐴𝑖 computes 𝜏𝑚 = 𝜏𝑚 ∙ 𝑦𝑟 and sends it to the CSP.

 Inter-deduplication: The CSP leverages Algorithm 2 to check whether the duplicate exists or not among different domains.

 Data encryption / key recovery: After receiving the feedback, if the message is “data upload”, U performs data encryption

operations. If the received message is ``duplication ∥ 𝐵𝑚∗ ’’, U conducts key recovery operations.

 Data encryption: U encrypts the data m before outsourcing as follows.

 (1) Randomly choose 𝛽𝑚 ∈ ℤ𝑁, and set 𝐾𝑚 = 𝑒(𝑔𝑛+1, 𝑔)
𝛽𝑚, and

 then generate the convergent key 𝑐𝑘𝑚 = ℎ1(𝐾𝑚 ∥ 𝑚).

 (2) The ciphertext of m can be computed as

𝐶𝑚 = 𝑆𝐾𝐸𝑐𝑘𝑚(𝑚)

𝐵𝑚 = 𝑔𝛽𝑚 , 𝑣 ∙ 𝑔𝑛+1−𝑘𝑘∈𝐼
𝛽𝑚

 Key recovery: U recovers the convergent key 𝑐𝑘𝑚∗ = ℎ1(𝐾𝑚∗ ∥ 𝑚∗)

 with the private key 𝑑𝑖 and m as follows.

 (1) Let 𝐵𝑚∗ = (𝐵0, 𝐵1), compute 𝑒 𝑔𝑛+1 , 𝑔
𝛽𝑚∗ =

𝑒 𝑔𝑖,𝐵1

𝑒 𝑑𝑖∙ 𝑔𝑛+1−𝑘+𝑖𝑘∈𝐼
𝑘≠𝑖

, 𝐵0
;

 (2) Then U recovers 𝑐𝑘𝑚∗ with m as: 𝑐𝑘𝑚∗ = ℎ1(𝑒 𝑔𝑛+1 , 𝑔
𝛽𝑚∗ ∥ 𝑚).

 U recovers 𝑚′ by decrypting 𝐶𝑚 with 𝑐𝑘𝑚.

 Then, U generates the intra-tag 𝜏𝑚′ = 𝑑𝑖
ℎ2(𝑚

′)
 and

computes its hash value 𝑇𝑚′ = ℎ3(𝜏𝑚′) .

 At last, U verifies the integrity by checking whether

𝑇𝑚′ = 𝑇𝑚 holds.

