
Garbage Collection of Cold Regions

Introduction
• Balanced GC divides the heap into multiple regions.

• Surviving objects age after each garbage cycle.

• Young objects reside in Eden space and older in the tenured 
space.

• Cold objects are alive, but very rarely accessed.

• Many different types of objects can become cold, such as 
partial error strings, logging objects or properties objects.

• Cold objects are overhead for GC. Such objects are moved to 
a designated cold region. GC can speed up by excluding cold 
regions during cleanup

Problem statement
• The cold region may get swapped out to disk due to lower 

access frequency.

• Some long running applications may end up having dead 
objects in cold region.

• Analyze benchmarks to see under which conditions cold 
regions should undergo garbage collection.

• Prototype implementation in open J9.

Estimated cold regions
• Cold regions need not be part of the partial GC.

• The table above gives estimated cold regions for various 
specifications.

• Specjbb2005 shows cold regions contribute to 13.96%, which
can help reduce GC pause time.

.

Cold region classification
The cold regions could be in RAM, persistent memory or swapped
out. The decision to GC cold regions can be taken based on
following cost analysis –

• Regions in RAM: Should be GC’ed if high number of dead
objects are suspected.

• Regions in Persistent Memory: The trade-off between how
much space can be reclaimed in relation to the delay in
performing the GC along with the wear on the persistent
device.

• Paged out regions: Though cost of GC is high, it might help
in some cases to free up the heap.

Cost considerations
• Number of cold regions are specified when JVM starts, so no

runtime overhead is involved.

• Cold regions increase the number of copies during partial GC.

• Global GC does not have extra overhead due to cold regions.

Abhijit Taware, Kenneth B. Kent & Gerhard W. Dueck

University of New Brunswick, Faculty of Computer Science

Charlie Gracie

IBM Canada

{ataware, gdueck, ken}@unb.ca charlie_gracie@ca.ibm.com


