
Implementing a Heap over Multiple

Virtual Memory Areas in OMR

OMR Memory Abstraction
In the normal operation of OMR there is only one instance of

Virtual Memory. We aim to separate virtual memory into two

categories if requested, which for clarity will be designated

‘primary’ and ‘secondary’ virtual memory. These can be

described as separate heaps but exist as contiguous memory in

one heap object.

Creating two different types of virtual memory in OMR requires

changes at all levels of the OMR memory abstraction; Virtual

Memory exists as the lowest level of this abstraction.

Creating Two Virtual Memory Instances
Though the primary and secondary Virtual Memory

instances are differentiated primarily by having different

address ranges within the heap, the change from one Virtual

Memory object to two presents several challenges.

The 1:1 relationships from Heap and Memory Manager to

Virtual Memory must be changed. This involves additional

consideration of both primary and secondary memory tops,

bases, the alignment between memory object boundaries,

as well as the true ceiling of the heap.

Care must be taken to avoid overlapping allocations, and to

make sure that all components of the OMR memory

abstraction are using the correct heap ceiling and size. The

heap is still one object and needs to be treated as such.

Preserving Normal OMR Operating Parameters
It is necessary to make modifications that do not change the

normal behavior of OMR’s Memory Abstraction, such that if

no secondary memory is requested on configuration, then

there is only one virtual memory object. This requires

checks to see if secondary memory has a nonzero size. It

also necessitates that heap’s initialization uses the primary

memory size and boundary addresses to define the heap’s

dimensions until the secondary memory’s existence is

verified.

Distinguishing Virtual Memory Instances
Many of the functions that perform operations on memory

for the heap (e.g. expanding, contracting, reserving,

committing etc.) are responsible for memory operations

outside of the heap’s address range. Non-heap operations

must not trigger anything related to secondary memory, the

same is true for primary memory. Additionally both Virtual

Memory instances share a memory handle. Thus it is

necessary to know not only that secondary memory exists

but also whether the memory addresses used as

parameters on function calls refer to secondary address

space.

Michael Flawn, Scott Young, Kenneth B. Kent, Gerhard Dueck

University of New Brunswick, Faculty of Computer Science

Charlie Gracie

IBM Canada

{mflawn, scott.young, ken, gdueck}@unb.ca, charlie_gracie@ca.ibm.com


