Implementing a Heap over Multiple
Virtual Memory Areas in OMR

Michael Flawn, Scott Young, Kenneth B. Kent, Gerhard Dueck

University of New Brunswick, Faculty of Computer Science Creating Two Virtual |\/|emory Instances
Charlie Gracie Though the primary and secondary Virtual Memory
IBM Canada instances are differentiated primarily by having different

{mflawn, scott.young, ken, gdueck}@unb.ca, charlie_gracie@ca.ilbm.com address ranges within the heap, the change from one Virtual

. Memory object to two presents several challenges.
OMR Memory Abstraction y Obl P g

In the normal operation of OMR there is only one Iinstance of
Virtual Memory. We aim to separate virtual memory Iinto two
categories If requested, which for clarity will be designated
‘primary’ and ‘secondary’ virtual memory. These can be
described as separate heaps but exist as contiguous memory In
one heap object.

The 1:1 relationships from Heap and Memory Manager to
Virtual Memory must be changed. This involves additional
consideration of both primary and secondary memory tops,
bases, the alignment between memory object boundaries,
as well as the true ceiling of the heap.

Care must be taken to avoid overlapping allocations, and to
make sure that all components of the OMR memory
abstraction are using the correct heap ceiling and size. The
heap Is still one object and needs to be treated as such.

Creating two different types of virtual memory in OMR requires
changes at all levels of the OMR memory abstraction; Virtual
Memory exists as the lowest level of this abstraction.

Preserving Normal OMR Operating Parameters
It IS necessary to make modifications that do not change the

OMR Memory Abstraction * Objects Created on

Relationships Configuration ——————— normal behavior of OMR’s Memory Abstraction, such that if
- *Contang/Ataches venrmses e | N0 Secondary memory Is requested on configuration, then
e ™™ merace saniscresng. || there 1S only one virtual memory object. This requires
 Comvactonofitemory |- | - | checks to see If secondary memory has a nonzero size. It

also necessitates that heap’s Initialization uses the primary

| Contains/attaches
Contains | T ' memory size and boundary addresses to define the heap's
Heap Region Manager 1 Memoy Handic P— dimensions until the secondary memory’'s existence IS
e [e | [e | verified
- Look up Regions by Address Sub-Spaces with this Context |
| e ergo St oo empos | Imerace ataches Distinguishing Virtual Memory Instances
it LS Many of the functions that perform operations on memory
O e Sz e, —wmyswsece]| fOr the heap (e.g. expanding, contracting, reserving,
odies w‘l"wd: g} pssociates Regions Wi cmext_Cmle;f;fgjj;jjjﬂ - committing etc.) are responsible for memory operat?ons
S Gets merece oundeyng suaena | QUESIAe Of the heap's address range. Non-heap operations
e e a—— A raches) MUSE NOL trigger anything related to secondary memory, the
Memory Space Nodifies Mermory Handie rterface to Allocation Contex(® same Is true for primary memory. Additionally both Virtual
~Tracks Inal, Currer, Min and e O anaged Contexts. Memory Iinstances share a memory handle. Thus it iIs
Description and More for Heap and Metadata - Gets Context by ID or NUMA Node i
nterface to Collect Sub-Spaces | * | ‘ necessary to know not only that secondary memory exists
e suisies but also whether the memory addresses used as
C__ Comains—— parameters on function calls refer to secondary address
space.

IBM Centre for Advanced Studies - Atlantic

FACULTY OF COMPUTER SCIENCE

2AUNB

