
Cold Object Segregation

Cold objects
Cold objects are live objects that are infrequently referenced.
The frequency of reference for a given object changes over time,
therefore an object may become cold, or conversely, become
hot.

To be considered infrequently accessed, an object must exist for
a long time; otherwise it would not have lasted long enough to
cool down. These objects will cause the heap to fill faster (since
they are less likely to die and must take up space) and will
pollute the cache if they are adjacent to hot objects (since they
will not likely be referenced) .

If we move all cold objects to their own area of memory, we
should speed up execution. We likely increase the cache hit rate
and, more importantly, reduce the frequency and execution time
of garbage collections, as there is more memory available for hot
objects, which are less likely to still be alive when collection
occurs.

Segregating objects
For decades, secondary storage has been used as a means to
increase the effective size of memory through paging. It is
possible to memory map files in secondary storage and use them
as slower memory.

Since cold objects are infrequently accessed, we can store them
in secondary storage to allow for more live objects in the main
memory heap, decreasing the frequency of garbage collections.

Since objects tend to die young (due to the Generational
Hypothesis) and cold objects are all long lived-objects, moving
them to secondary memory should lead to a higher concentration
of garbage in the main memory heap. Copy collectors operate on
live objects only, and their runtime is linked to the number of live
objects in the collection space. This means that the collector
should also collect faster, if we segregate cold objects.

Scott Young, Kenneth B. Kent, Gerhard Dueck 

University of New Brunswick, Faculty of Computer Science

Charlie Gracie

IBM Canada

{scott.young, ken, gdueck}@unb.ca, charlie_gracie@ca.ibm.com

Region-Based Copy-Forward Garbage Collection
Region-based memory management schemes logically divide
their heap into fixed-sized regions. These regions maintain
information about incoming references in a structure called a
remember set (remset).

In a Copy-Forward Garbage Collector, collection happens by
scanning objects starting at the root set (thread stacks) and all
their descendants, copying into a survivor space and updating
pointers as new live objects are discovered.

In a Region-Based Copy-Forward Garbage Collector, a subset of
all regions are chosen to be collected, and are copied into free
regions. The remset is used as the root set as it contains all
incoming references.


