
Generic Ahead-of-Time Compilation for Eclipse OMR

The Eclipse OMR Project (http://eclipse.org/omr)

• Spawned from IBM’s OpenJ9 Java Virtual Machine

• Purpose: provide robust generic components for use in 
future compilers and language runtimes

• Contains many components at varying stages of completion:

• Runtime diagnostic tools

• Garbage collectors

• Just-in-time compiler

• Ahead-of-time compiler ???

Ahead-of-time Compilation

Ahead-of-time compilation (AOT) provides several advantages
over other modes of compilation:

• No interpretive overhead at runtime, making it especially 
attractive for embedded systems and low-latency 
applications

• Can help to alleviate lengthy startup times in virtual 
machines

• The cost of performing extensive optimizations on program 
code is borne only once, at compile-time

Gerhard Dueck, Kenneth B. Kent, Mark Thom

University of New Brunswick, Faculty of Computer Science

Daryl Maier, Mark Stoodley

IBM Canada

{gdueck, ken, mark.thom}@unb.ca, {maier, mstoodle}@ibm.ca

When compiled ahead-of-time, native code is generated once, 

before the program is ever run.

While the program is running

Enter program loop Call any function f

Run native code for fReturn to call site

Compile the program

Shared Class 

Cache

(native code)

Future JVM 

instance

AOT compiler

First JVM 

instance

Common Startup

Class

(Java code)

The Current Role of AOT Compilation in OpenJ9

In OpenJ9, classes used to bootstrap the Java virtual machine 

are compiled ahead-of-time when OpenJ9 first starts. The 

compiled code for these classes is stored in the Shared Class 

Cache. Future JVM instances are able to pull from the cache 

when they bootstrap, sparing them the need to compile the 

same family of classes all over again.

Some loading overhead is required, but it typically takes 1/100th

the time needed to compile the classes anew.

Motivation: Extending to a Language Agnostic AOT

OpenJ9’s AOT compiler caters specifically to the needs of a 

Java virtual machine. We aim to generalize beyond this to a 

language agnostic solution.

AOT compiler


