
Killing Zombies – Generating Realistic Trace Files

Motivation

JVM implementations are large-sized projects that include
ongoing improvements and additions of new features throughout
many years. Working on these projects or experimenting with
new algorithms can be a difficult and time consuming task.

Simulators are available that reproduce desired JVM operations.
They can be used to implement and test new features in little
time. Like a JVM, the simulator requires instructions in the form
of input-files that contain operations. Trace files are generated
with an instrumented JVM by capturing relevant operations. This
project focuses on the generation of highly realistic trace files.

Project

The trace file generation process includes the following files and 
subsystems:

The Previous Approach

The previous trace file generator kept objects directly reachable

from the roots as long as they were accessed. The last root set

deletion was printed after the last access to an object. The result

was an unrealistic root set representation.

The New Approach

In order to solve the root set problem, this project captures root
operations directly on occurrence. The bytecode interpreter
parses bytecode instructions and performs root additions and
deletions.

The following table shows how many functions push and pop
objects out of the total 334 interpreter-functions:

The Zombie Problem

The first test run revealed an unexpected problem: objects are
accessed after they become garbage. We call them zombie
objects. A very simple zombie example may look like this:

a T1 O42 S128 N3 //allocate Object 42

+ T1 O42 //add object 42 to the root set

- T1 O42 //remove object 42 from the root set

w T1 P40 #2 O42 //create a reference from object 40 to 42

After object 42 is removed from the roots, it is unreachable and
therefore garbage. The write operation from object 40 to 42 may
result into an error.

Reasons for Zombie Objects

Zombie objects exist because not all operations are captured
during JVM execution.

These are the main reasons for zombie objects:

• Missing locking operations

• Immortal Objects

• Rootset operations outside the bytecode interpreter

Johannes Ilisei, Kenneth B. Kent, Gerhard W. Dueck
University of New Brunswick, IBM Canada

Faculty of Computer Science

jilisei@unb.ca, ken@unb.ca, gdueck@unb.ca

Java Application
(Benchmark)

Instrumented 
JVM

Raw Trace File

PostprocessorTrace FileSimulator

Push Pop Push and Pop

41 19 5


