
Reordering Objects During Garbage Collection

Copying Garbage Collection

One of the basic garbage collection techniques is when all the 
live objects in a section of memory (Fromspace) are copied to 
another, fresh section of memory (Tospace). 

Cache Hardware

During program operation, any required data that is not found in 
the cache is loaded from main memory to the cache before use. 
This usually has the side effect of loading adjacent data as well.

Copy Collection Order

Live objects can be treated as a tree, with objects known to be
alive at the roots (rootset). By traversing the tree in different ways,
the order of objects in the Tospace changes.

Optimizing Order

Combining these ideas together, our research is to choose a copy
collection order that maximizes the amount of beneficial cache
side effects during loads. For object B in the above tree, is it more
likely that objects B and D will be used together often because
they are children of A, or that objects B and C will be used
together often because they are parent and child?

Our current approach is to shift the problem to an object’s class. If
we can run a program and gather data about how popular the
children of a class are in general, we can use that as a heuristic to
change how objects of that class are treated during garbage
collection.

We are implementing this approach in our garbage collection
simulator, to avoid implementation challenges in the real JVM.
The results will show whether an implementation in the JVM is
likely to show an improvement in execution time.

Samuel Kelley, Kenneth B. Kent, Gerhard Dueck
University of New Brunswick, IBM Canada

Faculty of Computer Science

Samuel.Kelley@unb.ca

Fromspace Tospace

Load Object A, 32 Bytes

A B

Cache Line, 64 Bytes

A B

A

B

C

Rootset: A

A

Tospace: Breadth First

B D

D

C

A

Tospace: Depth First

B DC


