
GraphJIT: a dynamic graph bytecode JIT compiler

Background

• Graph structures are prevalent--A number of hops from root to 
leaves are involved for a traversal. 

• Traversal on a graph consumes a number of computing 
resources; 

• Traversal is still necessary even if the graph has been JITted
on the JVM.

Performance

GraphJIT is applied to compile method handles, which are
created by dynamic JVM language interpreters for dynamic
method invocations.

• Ahead-Of-Time (AOT) compilation:

The execution time of the common MHG from JRuby micro-indy
benchmark is reduced by 31%.

• Just-In-Time (JIT) compilation

• JRuby micro-indy benchmark: 7% speedup on average.

• JavaScript Octane benchmark on Nashorn: 6% speedup,
with maximal 30%.

Shijie Xu, David Bremner, Daniel Heidinga
University of New Brunswick, IBM Canada

Faculty of Computer Science

{sxu3, dbremner}@unb.ca, daniel_heidinga@ca.ibm.com

Our Solution

• GraphJIT: a dynamic graph bytecode JIT compiler that 
translates a graph on the bytecode level, for graph 
simplification. 

• The main idea is to move leaves closer to the graph root by 
fusing graph internal nodes. 


