
Identifying Threads Groups Based

on Escaping Objects

INTRODUCTION

When a Java thread allocates an object inside the Java Virtual Machine
(JVM), the object can get accessed by other objects from other threads
(see figure 1). When this happens, the object is considered to have
escaped.

 Tristan M. Basa, Gerhard Dueck

University of New Brunswick

Faculty of Computer Science

tbasa@unb.ca, gdueck@unb.ca

Figure 1. Object 3 is considered escaped.

PROBLEM STATEMENT

• Global garbage collection (GC) can cause long execution pause time
which results in degradation of overall system performance.

• According to a recent study, up to 56% of all objects escape.

• Threads involved in escaping objects must be stopped when GC
runs. For example in figure 1, both threads must be stopped.

PROPOSED SOLUTION

• Partition the heap into smaller regions.

• Assign threads to regions on the following bases:

• One region per thread

• One region per group of threads.

Problem Scenario:
• Objects in thread A of region I are escaping to objects in thread B

of region II and vice versa (see figure 2).

• All threads in regions I and II (including thread C) need to be

stopped in order to perform region-based GC.

Figure 2. Threads in both regions have to be stopped in order to
perform a region-based GC.

Figure 3. Only threads in Region I are needed to be stopped in
order to perform a region-based GC.

PROPOSED APPROACH

• JVM Instrumentation – we can add agents to gather data as the program

is executing.

• Tracefile – we can read a file that contains a series of instructions that

emulates memory management operations in the JVM.

By grouping threads, a region-based GC can be performed on one
region without having to stop other threads from other regions.

Possible Solution:
• Threads A and B can be grouped together in one region as shown in

figure 3.

• GC can be done only on Region I (only threads A and B need to be

stopped) and thread C can continue its execution.

mailto:tbasa@unb.ca
mailto:gdueck@unb.ca

