Storage of Versioned Data Across Polygonal Regions

UNB

Stuart A. MacGillivray and Bradford G. Nickerson

Faculty of Computer Science, University of New Brunswick, Fredericton, New Brunswick, Canada

Results

- Number of subregions dependent on polygon arrangement.
- At most $\mathrm{O}\left(\mathrm{km}^{2}\right)$ or $\mathrm{O}\left(\mathrm{k}^{2} \mathrm{~m}^{2}\right)$ subregions exist in arrangements of m k sided convex or simple polygons, respectively.
- Each subregion can have as most O(mk) edges, and worst-case average O(k).
- Index structure supporting orthogonal range search requires minimum space equal to the number of edges and must process all edges of a given subregion in the worst case.
- Search returning T subregions from $m k$-sided simple polygons can be done in RAM in $\mathrm{O}\left(\mathrm{k}^{2} \mathrm{~m}^{2}\right)$ space, $\mathrm{O}(\mathrm{km}(\mathrm{log} \mathrm{km})+\mathrm{kT})$ time. [1]
- Data storage cost is linear in the total number of points N .
- Range search is an aggregate of queries on intersected subregions.
- Total search cost to retrieve S points from R subregions in the I/O model with block size B is $O(\sqrt{R N / B}+S / B) I / O s$.

Example Subdivisions

■ Two classes of polygon sets: all polygons convex, or all simple.

- Each of the following examples is a worst case for k and m .

Figure 1: $m=4, k=4$, simple polygons

Figure 2: $m=4, k=6$, convex polygons

Figure	$\|E\|$	$\left\|S_{n}\right\|$	$\left\|S_{1}\right\|$	$\left\|S_{n}\right\|$	$\left\|S_{2}\right\|$	$\left\|S_{1}\right\|$
1	208	17	42	31	7	1
2	168	1	24	24	24	1

Definitions: E is the set of edges, S_{n} is the set of subregions with n layers.

Data Structure

- Focus is on the I/O cost; geometric problem handled with basic implementation of subregion range search.
■ Disk-based point storage implemented as BKD-trees using STXXL[2].
\square Multi-layer structure: geometric structure points to temporal stacks with pointers to BKD-trees that index blocks on disk.

