
A Java Multitenant Application Server 

Introduction 
Multitenancy enables sharing of resources between different users, also 
known as tenants. The tenants execute their code as if the resources 
were held individually by them.  

 

We propose a technique for a multitenant application server in 
Java which uses a single JVM to support multiple tenants, each 
represented by its own JAR file without any changes to the 
tenants’ code. We base our work on the internal multitenant features 
(Xmt) of the IBM JVM which we exposed with a Java API we call the 
Tenant API. 

 

Our approach is significantly more efficient in saving memory 
(measured around 70% less) without any major throughput 
reductions when compared to IBM’s basic multitenant mode as well as 
the standard one-JVM-per-tenant mode. 

 

Furthermore, we discuss the theoretical maximum memory 
sharing levels across a number of different JVM configurations, 
including our proposed technique, using the Daytrader3 benchmark on 
the Liberty Web server. The results from the two approaches 
converge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We share virtually all of the hardware and software stack between our 
tenants, whose code is executed on top of a private Tenant Context, 
ensuring static field and performance isolation. 

 

TenantAPI 
Our TenantAPI exposes the IBM JVM multitenancy which allows it to 
create and destroy tenants as well as run code in their context enabling 
performance and common statics isolation. 

 

Theoretical Analysis of Memory Sharing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Multitenant Server 
Our server starts by scanning a folder where the tenant JARs are located, 
creating a new tenant context and class loader per tenant using our 
TenantAPI and mapping tenants to their URLs. When a request arrives, 
the mapping is looked up to find the tenant it belongs to and the serving 
code from the JAR file is run on the tenant’s context using our TenantAPI. 

We measured footprint savings and speedups in two applications. One 
hello world and another with flights and hotels bookings. We compare our 
version with Xmt using one JVM per tenant as the baseline. 

 

 

 

 

 

 

 

              Hello World                                               Flight-Hotels DB 

 

 

 

 

 

 

 

 

 

P. Patros1, D. Dilli1, K. Kent1, M. Dawson2, T. Watson2 

1: Faculty of Computer Science, University of New Brunswick 

2: IBM 

Patros.Panos@unb.ca, Dayal.Dilli@unb.ca, Ken@unb.ca, 

Michael Dawson@ca.ibm.com, tjwatson@us.ibm.com 


