Object Cache Locality in a Managed Runtime Environment

Marcel Dombrowski, Kenneth B. Kent, Michael Dawson, Dane Henshall
University of New Brunswick, IBM Canada
Faculty of Computer Science
{marcel.dombrowskilken}unb.ca, {michael dawson|dane henshall}@ca.ilbm.com

BACKGROUND

A managed runtime environment means that the programmers do not
have to deal with the deallocation of memory, because it abstracts from
the memory layer. The environment detects whether an object is dead In
a garbage collect (GC) cycle. The Java Virtual Machine (JVM) Is an
example of a managed runtime environment.

These environments are usually operating system and hardware
Independent, which means that code written on one machine can be
used on all machines that support this environment. The object layout In
memory plays a crucial role in execution performance, as cache misses
and page faults mean retrieval of memory from lower layers In the
memory hierarchy (Figure 1).

Typical access time Typical capacity

1 nsec <1 KB

2 nsec 4 MB
10 nsec 512-2048 MB
10 msec 200-1000 GB

Figure 1. The memory hierarchy.

TECHNICAL APPROACH

Statistics have been gathered using different Java programs and
benchmarks. These statistics Include object temperature, popularity,
memory distance, and object size. They will be used In order to extract
knowledge and heuristics about object creation patterns.

The traversal of objects during a GC impacts the layout of objects In
memory as It rearranges objects. Several naive and adaptive traversal
approaches that relocate objects iIn memory depending on different
metrics will be done. These include breadth first, depth first, and natural
order traversal for the naive approaches and object hotness and
heuristics based traversal for adaptive approaches.

Our GC simulator will be used In order to prototype these approaches
and to conduct a feasibility study. A traversal evaluator has been written
In order to determine the correctness of a traversal approach. A proof-
of-concept implementation will then be done in the IBM JVM.

))
UNB

|IBM Centre for Advanced Studies - Atlantic

PROTOTYPING

Our simulator has been extended to Include a real allocator which
allocates the heap at the start up of the simulator and manages the
avallable heap space. Interfaces have been extracted for our simulator
that allow easy implementation of new allocators and collectors (Figure
2).

Roots

—» Allocator

B full()

¥

allocate()

Memory
Manager

Objects

collect()

frEE‘[,'l | | l

Collector

Figure 2: The architecture of our simulator.

A copying collector that uses a real heap has been implemented. For the
copying collector we implemented a depth first and breadth first traversal
and are currently implementing an object hotness based traversal (Figure
3). After that we will profile the simulator in order to determine the cache
misses and page faults for several tracefiles. We extended the IBM JVM
to allow tracing of objects. We use this extension In order to generate
tracefiles from real world applications using the IBM JVM.

Traversal Order

Breadth First: 12345

Depth First: 12453
25 15 Hotness: 12534

Figure 3: The traversal order for several approaches.

EVALUATION

Better cache locality may lead to better execution performance. We will
prototype several traversal approaches in the simulator. If the prototyping
of these approaches Indicate an increase In performance or object
locality the approaches will be applied to the IBM JVM for evaluation.

Several benchmarks will be wused to determine the feasibility.
Furthermore, we will discuss whether the overhead of adaptive
approaches will outweigh the performance gain compared to naive
approaches.

The results from the gathered statistics will be used to create a static
ruleset for object creation prediction. This ruleset will then be evaluated
by looking at the ratio of memory usage against cache misses.

FACULTY OF COMPUTER SCIENCE

